These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 9037419)
1. Instrumental conditioning of the activity of putative command neurons in the mollusk Helix. Tsitolovsky LE; Shvedov A Brain Res; 1997 Jan; 745(1-2):271-82. PubMed ID: 9037419 [TBL] [Abstract][Full Text] [Related]
2. A comparison of neuronal reactions during classical and instrumental conditioning under similar conditions. Tsitolovsky L; Babkina N; Shvedov A Neurobiol Learn Mem; 2004 Jan; 81(1):82-95. PubMed ID: 14670362 [TBL] [Abstract][Full Text] [Related]
3. Mono- and polysynaptic connections between identified neurons in the system of the passive avoidance reflex of the snail. Palikhova TA; Marakueva IV; Arakelov GG Neurosci Behav Physiol; 1994; 24(1):71-6. PubMed ID: 8208385 [TBL] [Abstract][Full Text] [Related]
4. Collaboration of trained and foreign neurons during formations of a local instrumental reflex. Tsitolovsky LE; Shvedov A Neuroreport; 1998 Jul; 9(10):2297-303. PubMed ID: 9694218 [TBL] [Abstract][Full Text] [Related]
5. Suppression of synaptic input of defense behavior command neurons by stimulation of neurons of the mesocerebrum in a preparation of the isolated CNS of the common snail. Maksimova OA Neurosci Behav Physiol; 1996; 26(3):259-65. PubMed ID: 8823744 [TBL] [Abstract][Full Text] [Related]
6. [The active electrogenesis of the command neurons in the defensive behavior of the mollusk during conditioning]. Babkina NV; Tsitolovskiĭ LE Zh Vyssh Nerv Deiat Im I P Pavlova; 1991; 41(4):781-7. PubMed ID: 1660658 [TBL] [Abstract][Full Text] [Related]
7. Active electrogenesis of command neurons of defense behavior of the snail during conditioning. Babkina NV; Tsitolovskii LE Neurosci Behav Physiol; 1992; 22(5):380-5. PubMed ID: 1436442 [TBL] [Abstract][Full Text] [Related]
8. [Synapses identifiable in the parietal ganglia of the snail Helix lucorum]. Palikhova TA Zh Vyssh Nerv Deiat Im I P Pavlova; 2000; 50(5):775-90. PubMed ID: 11084995 [TBL] [Abstract][Full Text] [Related]
9. Role of dopamine and serotonin in modulation of snail defensive behavior. Chistyakova MV Neurosci Behav Physiol; 1990; 20(5):446-52. PubMed ID: 2077447 [TBL] [Abstract][Full Text] [Related]
10. [Selective decrease in neuron excitability during habituation]. Tsitolovskiĭ LE; Tsaturian OI Zh Vyssh Nerv Deiat Im I P Pavlova; 1978; 28(1):25-32. PubMed ID: 636651 [TBL] [Abstract][Full Text] [Related]
11. [Sensitization and habituation of command neurons during a defensive reflex in grape snails]. Balaban PM Zh Vyssh Nerv Deiat Im I P Pavlova; 1978; 28(2):356-63. PubMed ID: 654575 [TBL] [Abstract][Full Text] [Related]
12. Postsynaptic mechanism of withdrawal reflex sensitization in the snail. Balaban PM J Neurobiol; 1983 Sep; 14(5):365-75. PubMed ID: 6311974 [TBL] [Abstract][Full Text] [Related]
13. [Duration of changes in electrical characteristics of command neurons after defensive conditioning in snails]. Gaĭnutdinova TKh; Andrianov VV; Gaĭnutdinov KhL; Mukhamedshina DI; Tagirova RR Zh Vyssh Nerv Deiat Im I P Pavlova; 2003; 53(3):379-82. PubMed ID: 12889212 [TBL] [Abstract][Full Text] [Related]
14. [Formation of a conditioned defense reflex in edible snails and changes in command neuron activity]. Maksimova OA Zh Vyssh Nerv Deiat Im I P Pavlova; 1980; 30(5):1003-11. PubMed ID: 6255701 [TBL] [Abstract][Full Text] [Related]
15. [Electrophysiological study of effects of chronic injection of caffeine on defensive reflex conditioning in grape snail]. Silant'eva DI; Gaĭnutdinova TKh; Andrianov VV; Gaĭnutdinov KhL Zh Vyssh Nerv Deiat Im I P Pavlova; 2008; 58(2):202-8. PubMed ID: 18661782 [TBL] [Abstract][Full Text] [Related]
16. [The mono- and polysynaptic connections between identified neurons in the system of the passive defensive reflex in the edible snail]. Palikhova TA; Marakueva IV; Arakelov GG Zh Vyssh Nerv Deiat Im I P Pavlova; 1992; 42(6):1170-9. PubMed ID: 1338249 [TBL] [Abstract][Full Text] [Related]
17. [Participation of the calcium-binding membrane components in the neurophysiologic mechanisms of habituation in the edible snail]. Nikitin VP; Samoĭlov MO Neirofiziologiia; 1989; 21(5):605-12. PubMed ID: 2601761 [TBL] [Abstract][Full Text] [Related]
18. Role of the axodendritic tree in the functioning of helix bursting neurons: generation of pacemaker activity and propagation of action potentials along the axon. Kononenko NI Neuroscience; 2000; 96(2):399-406. PubMed ID: 10683580 [TBL] [Abstract][Full Text] [Related]
19. Serotonin imitates several of the neuronal effects of nociceptive sensitization in the common snail. Shevelkin AV; Nikitin VP; Kozyrev SA; Samoilov MO; Sherstnev VV Neurosci Behav Physiol; 1998; 28(5):547-55. PubMed ID: 9809295 [TBL] [Abstract][Full Text] [Related]
20. [Independence of the process of habituation from protein synthesis in the mollusk neuron]. Tsitolovskiĭ LE; Kukhanova MK Zh Vyssh Nerv Deiat Im I P Pavlova; 1983; 33(6):1121-7. PubMed ID: 6666338 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]