These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 9037747)

  • 1. X-ray diffraction from a helix of any length that displays cumulative azimuthal disorder.
    Mu XQ; Makowski L; Fairchild BM
    Acta Crystallogr A; 1997 Jan; 53 ( Pt 1)():55-62. PubMed ID: 9037747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray diffraction of helices with arbitrary periodic ligand binding.
    Gu J; Yu LC
    Acta Crystallogr D Biol Crystallogr; 1999 Dec; 55(Pt 12):2022-7. PubMed ID: 10666578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray diffraction studies of cross-bridges weakly bound to actin in relaxed skinned fibers of rabbit psoas muscle.
    Xu S; Malinchik S; Gilroy D; Kraft T; Brenner B; Yu LC
    Biophys J; 1997 Nov; 73(5):2292-303. PubMed ID: 9370426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of actin-rich filaments of muscles according to x-ray diffraction.
    SELBY CC; BEAR RS
    J Biophys Biochem Cytol; 1956 Jan; 2(1):71-85. PubMed ID: 13295312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct structural changes detected by X-ray fiber diffraction in stabilization of F-actin by lowering pH and increasing ionic strength.
    Oda T; Makino K; Yamashita I; Namba K; Maéda Y
    Biophys J; 2001 Feb; 80(2):841-51. PubMed ID: 11159451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffraction by partially occupied helices.
    Tsaturyan AK
    Acta Crystallogr A; 2002 May; 58(Pt 3):292-4. PubMed ID: 11961291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-induced structural changes in the myosin thick filament of skinned rabbit psoas muscle.
    Malinchik S; Xu S; Yu LC
    Biophys J; 1997 Nov; 73(5):2304-12. PubMed ID: 9370427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Structural changes in actin filaments during binding with phosphofructokinase (F-protein), detected using an optical diffraction method].
    Podlubnaia ZA; Shpagina MD; Freĭdina NA; Udal'tsov SN
    Biofizika; 1996; 41(1):73-7. PubMed ID: 8714461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Position and orientation of phalloidin in F-actin determined by X-ray fiber diffraction analysis.
    Oda T; Namba K; Maéda Y
    Biophys J; 2005 Apr; 88(4):2727-36. PubMed ID: 15653738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An atomic model of the unregulated thin filament obtained by X-ray fiber diffraction on oriented actin-tropomyosin gels.
    Lorenz M; Poole KJ; Popp D; Rosenbaum G; Holmes KC
    J Mol Biol; 1995 Feb; 246(1):108-19. PubMed ID: 7853391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray scattering from a discrete helix with cumulative angular and translational disorders.
    Inouye H
    Acta Crystallogr A; 1994 Sep; 50 ( Pt 5)():644-6. PubMed ID: 7946155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure of F-actin. Results of global searches using data from electron microscopy and X-ray crystallography.
    Mendelson RA; Morris E
    J Mol Biol; 1994 Jul; 240(2):138-54. PubMed ID: 8027998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic model of the actin filament.
    Holmes KC; Popp D; Gebhard W; Kabsch W
    Nature; 1990 Sep; 347(6288):44-9. PubMed ID: 2395461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D structure of relaxed fish muscle myosin filaments by single particle analysis.
    Al-Khayat HA; Morris EP; Kensler RW; Squire JM
    J Struct Biol; 2006 Aug; 155(2):202-17. PubMed ID: 16731006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the stability of hemoglobin S double strands.
    Mu XQ; Makowski L; Magdoff-Fairchild B
    Biophys J; 1998 Jan; 74(1):655-68. PubMed ID: 9449367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm.
    Lorenz M; Popp D; Holmes KC
    J Mol Biol; 1993 Dec; 234(3):826-36. PubMed ID: 8254675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct modeling of x-ray diffraction pattern from skeletal muscle in rigor.
    Koubassova NA; Tsaturyan AK
    Biophys J; 2002 Aug; 83(2):1082-97. PubMed ID: 12124288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small angle X-ray scattering and electron cryomicroscopy study of actin filaments: role of the bound nucleotide in the structure of F-actin.
    Lepault J; Ranck JL; Erk I; Carlier MF
    J Struct Biol; 1994; 112(1):79-91. PubMed ID: 8031642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of thin filament activation on the attachment of weak binding cross-bridges: A two-dimensional x-ray diffraction study on single muscle fibers.
    Kraft T; Xu S; Brenner B; Yu LC
    Biophys J; 1999 Mar; 76(3):1494-513. PubMed ID: 10049330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.