These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 9037756)

  • 21. Response of Bacillus subtilis to high osmolarity: uptake of carnitine, crotonobetaine and γ-butyrobetaine via the ABC transport system OpuC.
    Kappes RM; Bremer E
    Microbiology (Reading); 1998 Jan; 144(1):83-90. PubMed ID: 33757219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biotransformation of crotonobetaine to L(-)-carnitine in Proteus sp.
    Engemann C; Elssner T; Kleber HP
    Arch Microbiol; 2001 May; 175(5):353-9. PubMed ID: 11409545
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a Biosensor for Crotonobetaine-CoA Ligase Screening Based on the Elucidation of
    Kugler P; Fröhlich D; Wendisch VF
    ACS Synth Biol; 2020 Sep; 9(9):2460-2471. PubMed ID: 32794733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crotonobetaine reductase from Escherichia coli consists of two proteins.
    Preusser A; Wagner U; Elssner T; Kleber HP
    Biochim Biophys Acta; 1999 Apr; 1431(1):166-78. PubMed ID: 10209289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of CaiB, a type-III CoA transferase in carnitine metabolism.
    Stenmark P; Gurmu D; Nordlund P
    Biochemistry; 2004 Nov; 43(44):13996-4003. PubMed ID: 15518548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of salt stress on crotonobetaine and D(+)-carnitine biotransformation into L(-)-carnitine by resting cells of Escherichia coli.
    Cánovas M; Torroglosa T; Kleber HP; Iborra JL
    J Basic Microbiol; 2003; 43(4):259-68. PubMed ID: 12872307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carnitine--metabolism and functions.
    Bremer J
    Physiol Rev; 1983 Oct; 63(4):1420-80. PubMed ID: 6361812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative analysis of the dynamic signaling pathway involved in the cAMP mediated induction of l-carnitine biosynthesis in E. coli cultures.
    Hormiga J; González-Alcón C; Sevilla A; Cánovas M; Torres NV
    Mol Biosyst; 2010 Apr; 6(4):699-710. PubMed ID: 20237648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Reduction of crotonobetaine and D-carnitine to gamma-butyrobetaine, and the metabolism of L-carnitine in the mouse and rat].
    Seim H; Strack E
    Hoppe Seylers Z Physiol Chem; 1980 Jul; 361(7):1059-67. PubMed ID: 7409744
    [No Abstract]   [Full Text] [Related]  

  • 30. The fixA and fixB genes are necessary for anaerobic carnitine reduction in Escherichia coli.
    Walt A; Kahn ML
    J Bacteriol; 2002 Jul; 184(14):4044-7. PubMed ID: 12081978
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of betaine:CoA ligase (CaiC) in the activation of betaines and the transfer of coenzyme A in Escherichia coli.
    Bernal V; Arense P; Blatz V; Mandrand-Berthelot MA; Cánovas M; Iborra JL
    J Appl Microbiol; 2008 Jul; 105(1):42-50. PubMed ID: 18266698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation.
    Kuka J; Liepinsh E; Makrecka-Kuka M; Liepins J; Cirule H; Gustina D; Loza E; Zharkova-Malkova O; Grinberga S; Pugovics O; Dambrova M
    Life Sci; 2014 Nov; 117(2):84-92. PubMed ID: 25301199
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolism of D: (+)-carnitine by Escherichia coli.
    Jung H; Kleber HP
    Appl Microbiol Biotechnol; 1991 Jun; 35(3):393-395. PubMed ID: 22622940
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling, optimization and experimental assessment of continuous L-(-)-carnitine production by Escherichia coli cultures.
    Alvarez-Vasquez F; Cánovas M; Iborra JL; Torres NV
    Biotechnol Bioeng; 2002 Dec; 80(7):794-805. PubMed ID: 12402325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conversion of gamma-butyrobetaine to L-carnitine by Achromobacter cycloclast.
    Naidu GS; Lee IY; Cho OK; Park YH
    J Ind Microbiol Biotechnol; 2001 May; 26(5):309-15. PubMed ID: 11494108
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of dietary carnitine isomers and gamma-butyrobetaine on L-carnitine biosynthesis and metabolism in the rat.
    Rebouche CJ
    J Nutr; 1983 Oct; 113(10):1906-13. PubMed ID: 6619971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Reductive metabolism of L-carnitine and structure-related trimethylammonium compounds in Escherichia coli].
    Seim H; Löster H; Kleber HP
    Acta Biol Med Ger; 1982; 41(11):1009-18. PubMed ID: 6763432
    [No Abstract]   [Full Text] [Related]  

  • 38. Catabolic pathways for high-dosed L(-)- or D(+)-carnitine in germ-free rats?
    Seim H; Schulze J; Strack E
    Biol Chem Hoppe Seyler; 1985 Nov; 366(11):1017-21. PubMed ID: 4074494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of metabolic engineering strategies for maximizing L-(-)-carnitine production by Escherichia coli. Integration of the metabolic and bioreactor levels.
    Sevilla A; Vera J; Díaz Z; Cánovas M; Torres NV; Iborra JL
    Biotechnol Prog; 2005; 21(2):329-37. PubMed ID: 15801767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO.
    Koeth RA; Levison BS; Culley MK; Buffa JA; Wang Z; Gregory JC; Org E; Wu Y; Li L; Smith JD; Tang WHW; DiDonato JA; Lusis AJ; Hazen SL
    Cell Metab; 2014 Nov; 20(5):799-812. PubMed ID: 25440057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.