These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 9038069)

  • 1. [Influence of transglottal pressure on vocal fundamental frequency changes with stiffness of vocal folds].
    Tanaka K; Kitajima K; Kataoka H; Kataoka K; Tanaka H
    Nihon Jibiinkoka Gakkai Kaiho; 1997 Jan; 100(1):1-6. PubMed ID: 9038069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between transglottal pressure and fundamental frequency of phonation, with effects of dehydration produced by atropine, in healthy volunteers.
    Tanaka K; Kitajima K; Tanaka H
    Ann Otol Rhinol Laryngol; 2001 Nov; 110(11):1066-71. PubMed ID: 11713920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of length and depth of vibration of the vocal folds on the relationship between transglottal pressure and fundamental frequency of phonation in canine larynges.
    Kataoka K; Kitajima K
    Ann Otol Rhinol Laryngol; 2001 Jun; 110(6):556-61. PubMed ID: 11407847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between transglottal pressure and fundamental frequency of phonation--study using a rubber model.
    Owaki S; Kataoka H; Shimizu T
    J Voice; 2010 Mar; 24(2):127-32. PubMed ID: 19230603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of artificially lengthened vocal tract on vocal fold oscillation's fundamental frequency.
    Hanamitsu M; Kataoka H
    J Voice; 2004 Jun; 18(2):169-75. PubMed ID: 15193649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of intraoral pressure change on F0 regulation--preliminary study for the evaluation of vocal fold stiffness.
    Kitajima K; Tanaka K
    J Voice; 1995 Dec; 9(4):424-8. PubMed ID: 8574309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of transglottal pressure on fundamental frequency of phonation: study with a rubber model.
    Kataoka H; Kitajima K; Owaki S
    Ann Otol Rhinol Laryngol; 2001 Jan; 110(1):56-62. PubMed ID: 11201810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical analysis of effects of transglottal pressure change on fundamental frequency of phonation.
    Deguchi S; Matsuzaki Y; Ikeda T
    Ann Otol Rhinol Laryngol; 2007 Feb; 116(2):128-34. PubMed ID: 17388237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating vocal fold stiffness: Using the relationship between subglottic pressure and fundamental frequency of phonation as an analog.
    Tseng WH; Chang CC; Yang TL; Hsiao TY
    Clin Otolaryngol; 2020 Jan; 45(1):40-46. PubMed ID: 31625675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-aided technique for automatic determination of the relationship between transglottal pressure change and voice fundamental frequency.
    Deguchi S; Kawashima K; Washio S
    Ann Otol Rhinol Laryngol; 2008 Dec; 117(12):876-80. PubMed ID: 19140531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vocal fold dynamics for frequency change.
    Hollien H
    J Voice; 2014 Jul; 28(4):395-405. PubMed ID: 24726331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Phase relationship between dynamics of the subglottic pressure and oscillatory movement of the vocal folds. I. Sustained phonation].
    Dejonckere P; Lebacq J
    Arch Int Physiol Biochim; 1980 Oct; 88(4):333-41. PubMed ID: 6163402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling coupled aerodynamics and vocal fold dynamics using immersed boundary methods.
    Duncan C; Zhai G; Scherer R
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2859-71. PubMed ID: 17139744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of subglottic pressure on fundamental frequency of the canine larynx with active muscle tensions.
    Hsiao TY; Solomon NP; Luschei ES; Titze IR; Liu K; Fu TC; Hsu MM
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):817-21. PubMed ID: 7944175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of vocal fold epithelium removal on vibration in an excised human larynx model.
    Tse JR; Zhang Z; Long JL
    J Acoust Soc Am; 2015 Jul; 138(1):EL60-4. PubMed ID: 26233062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical measurement of mucosal wave velocity using simultaneous photoglottography and laryngostroboscopy.
    Hanson DG; Jiang J; D'Agostino M; Herzon G
    Ann Otol Rhinol Laryngol; 1995 May; 104(5):340-9. PubMed ID: 7747903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
    Ahmad M; Dargaud J; Morin A; Cotton F
    J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of mucosal loading on vocal fold vibration.
    Tao C; Jiang JJ
    Chaos; 2009 Jun; 19(2):023113. PubMed ID: 19566248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oral breathing challenge in participants with vocal attrition.
    Sivasankar M; Fisher KV
    J Speech Lang Hear Res; 2003 Dec; 46(6):1416-27. PubMed ID: 14700365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bi-stable vocal fold adduction: a mechanism of modal-falsetto register shifts and mixed registration.
    Titze IR
    J Acoust Soc Am; 2014 Apr; 135(4):2091-101. PubMed ID: 25235006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.