These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9038069)

  • 21. Electroglottographic evaluation of gender and vowel effects during modal and vocal fry phonation.
    Chen Y; Robb MP; Gilbert HR
    J Speech Lang Hear Res; 2002 Oct; 45(5):821-9. PubMed ID: 12381041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An experimental analysis of the pressures and flows within a driven mechanical model of phonation.
    Kucinschi BR; Scherer RC; Dewitt KJ; Ng TT
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3011-21. PubMed ID: 16708957
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Noninvasive measurement of traveling wave velocity in the canine larynx.
    Nasri S; Sercarz JA; Berke GS
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):758-66. PubMed ID: 7944166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intraoral pressure in the evaluation of laryngeal function.
    Kitajima K; Tanaka K
    Acta Otolaryngol; 1993 Jul; 113(4):553-9. PubMed ID: 8379312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical study of the effects of inferior and superior vocal fold surface angles on vocal fold pressure distributions.
    Li S; Scherer RC; Wan M; Wang S; Wu H
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3003-10. PubMed ID: 16708956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aerodynamic and acoustic effects of false vocal folds and epiglottis in excised larynx models.
    Alipour F; Jaiswal S; Finnegan E
    Ann Otol Rhinol Laryngol; 2007 Feb; 116(2):135-44. PubMed ID: 17388238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of transglottal pressure change on fundamental frequency of phonation: preliminary evaluation of the effect of intraoral pressure change.
    Tanaka K; Kitajima K; Kataoka H
    Folia Phoniatr Logop; 1997; 49(6):300-7. PubMed ID: 9415735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aeroacoustic source characterization in a physical model of phonation.
    McPhail MJ; Campo ET; Krane MH
    J Acoust Soc Am; 2019 Aug; 146(2):1230. PubMed ID: 31472595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of the ventricular folds in a synthetic larynx model.
    Kniesburges S; Birk V; Lodermeyer A; Schützenberger A; Bohr C; Becker S
    J Biomech; 2017 Apr; 55():128-133. PubMed ID: 28285747
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Viscoelastic properties of human aryepiglottic fold and ventricular fold tissues at phonatory frequencies.
    Kimura M; Chan RW
    Laryngoscope; 2018 Aug; 128(8):E296-E301. PubMed ID: 29243255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electroglottography and laryngeal articulation in speech.
    Hong KH; Kim HK
    Folia Phoniatr Logop; 1997; 49(5):225-33. PubMed ID: 9311157
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct measurement of onset and offset phonation threshold pressure in normal subjects.
    Plant RL; Freed GL; Plant RE
    J Acoust Soc Am; 2004 Dec; 116(6):3640-6. PubMed ID: 15658714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative evaluation of the effects of thyroarytenoid muscle activity upon pliability of vocal fold mucosa in an in vivo canine model.
    Yumoto E; Kadota Y
    Laryngoscope; 1997 Feb; 107(2):266-72. PubMed ID: 9023254
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using the relaxation oscillations principle for simple phonation modeling.
    Garrel R; Scherer R; Nicollas R; Giovanni A; Ouaknine M
    J Voice; 2008 Jul; 22(4):385-98. PubMed ID: 17280814
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phonation thresholds as a function of laryngeal size in a two-mass model of the vocal folds.
    Lucero JC; Koenig LL
    J Acoust Soc Am; 2005 Nov; 118(5):2798-801. PubMed ID: 16334896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Laser measuring device for phonation].
    Schade G; Kirchhoff T; Hess M
    Folia Phoniatr Logop; 2005; 57(4):202-15. PubMed ID: 16037696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time-Dependent Pressure and Flow Behavior of a Self-oscillating Laryngeal Model With Ventricular Folds.
    Alipour F; Scherer RC
    J Voice; 2015 Nov; 29(6):649-59. PubMed ID: 25873541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vocal fold collision threshold pressure: An alternative to phonation threshold pressure?
    Enflo L; Sundberg J
    Logoped Phoniatr Vocol; 2009 Dec; 34(4):210-7. PubMed ID: 19916893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anatomy and physiology of the larynx.
    Noordzij JP; Ossoff RH
    Otolaryngol Clin North Am; 2006 Feb; 39(1):1-10. PubMed ID: 16469651
    [No Abstract]   [Full Text] [Related]  

  • 40. Vibratory patterns of the vocal folds during pulse register phonation.
    Whitehead RL; Metz DE; Whitehead BH
    J Acoust Soc Am; 1984 Apr; 75(4):1293-7. PubMed ID: 6725780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.