These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 9038069)
41. A numerical analysis of phonation using a two-dimensional flexible channel model of the vocal folds. Ikeda T; Matsuzaki Y; Aomatsu T J Biomech Eng; 2001 Dec; 123(6):571-9. PubMed ID: 11783728 [TBL] [Abstract][Full Text] [Related]
48. The influence of epilarynx area on vocal fold dynamics. Döllinger M; Berry DA; Montequin DW Otolaryngol Head Neck Surg; 2006 Nov; 135(5):724-729. PubMed ID: 17071302 [TBL] [Abstract][Full Text] [Related]
49. High-speed imaging of vocal fold vibrations and larynx movements within vocalizations of different vowels. Maurer D; Hess M; Gross M Ann Otol Rhinol Laryngol; 1996 Dec; 105(12):975-81. PubMed ID: 8973285 [TBL] [Abstract][Full Text] [Related]
50. A quantitative model of voice F0 control. Farley GR J Acoust Soc Am; 1994 Feb; 95(2):1017-29. PubMed ID: 8132896 [TBL] [Abstract][Full Text] [Related]
51. A Detailed Motion Analysis of the Angular Velocity Between the Vocal Folds During Throat Clearing Using High-speed Digital Imaging. Iwahashi T; Ogawa M; Hosokawa K; Kato C; Inohara H J Voice; 2016 Nov; 30(6):770.e1-770.e8. PubMed ID: 26778326 [TBL] [Abstract][Full Text] [Related]
52. On the relation between the phonation threshold lung pressure and the oscillation frequency of the vocal folds. Lucero JC; Koenig LL J Acoust Soc Am; 2007 Jun; 121(6):3280-3. PubMed ID: 17552679 [TBL] [Abstract][Full Text] [Related]
53. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds. Zhang Z; Neubauer J; Berry DA J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2841-9. PubMed ID: 17139742 [TBL] [Abstract][Full Text] [Related]
54. Vocal fold mass is not a useful quantity for describing F0 in vocalization. Titze IR J Speech Lang Hear Res; 2011 Apr; 54(2):520-2. PubMed ID: 21460133 [TBL] [Abstract][Full Text] [Related]
55. Discovery of a low frequency sound source in Mysticeti (baleen whales): anatomical establishment of a vocal fold homolog. Reidenberg JS; Laitman JT Anat Rec (Hoboken); 2007 Jun; 290(6):745-59. PubMed ID: 17516447 [TBL] [Abstract][Full Text] [Related]
56. The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges. Wang R; Bao H; Xu X; Piotrowski D; Zhang Y; Zhuang P J Voice; 2018 Jul; 32(4):396-402. PubMed ID: 28826980 [TBL] [Abstract][Full Text] [Related]
57. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model. Zhang Z J Acoust Soc Am; 2016 Apr; 139(4):1493. PubMed ID: 27106298 [TBL] [Abstract][Full Text] [Related]
58. Effects of consonant manner and vowel height on intraoral pressure and articulatory contact at voicing offset and onset for voiceless obstruents. Koenig LL; Fuchs S; Lucero JC J Acoust Soc Am; 2011 May; 129(5):3233-44. PubMed ID: 21568425 [TBL] [Abstract][Full Text] [Related]
59. Dynamics of the Driving Force During the Normal Vocal Fold Vibration Cycle. DeJonckere PH; Lebacq J; Titze IR J Voice; 2017 Nov; 31(6):649-661. PubMed ID: 28495329 [TBL] [Abstract][Full Text] [Related]
60. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation. Doellinger M; Berry DA; Berke GS Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]