BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 9038143)

  • 1. In vitro kinetic studies of formation of antigenic advanced glycation end products (AGEs). Novel inhibition of post-Amadori glycation pathways.
    Booth AA; Khalifah RG; Todd P; Hudson BG
    J Biol Chem; 1997 Feb; 272(9):5430-7. PubMed ID: 9038143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of nonenzymatic glycation of ribonuclease A leading to advanced glycation end products. Paradoxical inhibition by ribose leads to facile isolation of protein intermediate for rapid post-Amadori studies.
    Khalifah RG; Todd P; Booth AA; Yang SX; Mott JD; Hudson BG
    Biochemistry; 1996 Apr; 35(15):4645-54. PubMed ID: 8664253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiamine pyrophosphate and pyridoxamine inhibit the formation of antigenic advanced glycation end-products: comparison with aminoguanidine.
    Booth AA; Khalifah RG; Hudson BG
    Biochem Biophys Res Commun; 1996 Mar; 220(1):113-9. PubMed ID: 8602828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amadorins: novel post-Amadori inhibitors of advanced glycation reactions.
    Khalifah RG; Baynes JW; Hudson BG
    Biochem Biophys Res Commun; 1999 Apr; 257(2):251-8. PubMed ID: 10198198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effect of metformin and pyridoxamine in the formation of early, intermediate and advanced glycation end-products.
    Ahmad S; Shahab U; Baig MH; Khan MS; Khan MS; Srivastava AK; Saeed M; Moinuddin
    PLoS One; 2013; 8(9):e72128. PubMed ID: 24023728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pyridoxamine action on Amadori compounds: A reexamination of its scavenging capacity and chelating effect.
    Adrover M; Vilanova B; Frau J; Muñoz F; Donoso J
    Bioorg Med Chem; 2008 May; 16(10):5557-69. PubMed ID: 18434162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of proteins in vitro by physiological levels of glucose: pyridoxamine inhibits conversion of Amadori intermediate to advanced glycation end-products through binding of redox metal ions.
    Voziyan PA; Khalifah RG; Thibaudeau C; Yildiz A; Jacob J; Serianni AS; Hudson BG
    J Biol Chem; 2003 Nov; 278(47):46616-24. PubMed ID: 12975371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of advanced protein glycation by a Schiff base between aminoguanidine and pyridoxal.
    Taguchi T; Sugiura M; Hamada Y; Miwa I
    Eur J Pharmacol; 1999 Aug; 378(3):283-9. PubMed ID: 10493104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amadori albumin and advanced glycation end-product formation in peritoneal dialysis using icodextrin.
    Posthuma N; ter Wee PM; Niessen H; Donker AJ; Verbrugh HA; Schalkwijk CG
    Perit Dial Int; 2001; 21(1):43-51. PubMed ID: 11280495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A post-Amadori inhibitor pyridoxamine also inhibits chemical modification of proteins by scavenging carbonyl intermediates of carbohydrate and lipid degradation.
    Voziyan PA; Metz TO; Baynes JW; Hudson BG
    J Biol Chem; 2002 Feb; 277(5):3397-403. PubMed ID: 11729198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-Amadori AGE inhibition as a therapeutic target for diabetic complications: a rational approach to second-generation Amadorin design.
    Khalifah RG; Chen Y; Wassenberg JJ
    Ann N Y Acad Sci; 2005 Jun; 1043():793-806. PubMed ID: 16037307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine.
    Edelstein D; Brownlee M
    Diabetes; 1992 Jan; 41(1):26-9. PubMed ID: 1727735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aminoguanidine inhibits protein browning without extensive Amadori carbonyl blocking.
    Requena JR; Vidal P; Cabezas-Cerrato J
    Diabetes Res Clin Pract; 1993 Jan; 19(1):23-30. PubMed ID: 8472617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation.
    Ruggiero-Lopez D; Lecomte M; Moinet G; Patereau G; Lagarde M; Wiernsperger N
    Biochem Pharmacol; 1999 Dec; 58(11):1765-73. PubMed ID: 10571251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of advanced glycation endproduct formation by acetaldehyde: role in the cardioprotective effect of ethanol.
    Al-Abed Y; Mitsuhashi T; Li H; Lawson JA; FitzGerald GA; Founds H; Donnelly T; Cerami A; Ulrich P; Bucala R
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):2385-90. PubMed ID: 10051651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amadori product and age formation during nonenzymatic glycosylation of bovine serum albumin in vitro.
    Sharma SD; Pandey BN; Mishra KP; Sivakami S
    J Biochem Mol Biol Biophys; 2002 Aug; 6(4):233-42. PubMed ID: 12186738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyridoxamine as a multifunctional pharmaceutical: targeting pathogenic glycation and oxidative damage.
    Voziyan PA; Hudson BG
    Cell Mol Life Sci; 2005 Aug; 62(15):1671-81. PubMed ID: 15905958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of protein-bound carbonyl groups in the formation of advanced glycation endproducts.
    Liggins J; Furth AJ
    Biochim Biophys Acta; 1997 Aug; 1361(2):123-30. PubMed ID: 9300793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenolics from Garcinia mangostana Inhibit Advanced Glycation Endproducts Formation: Effect on Amadori Products, Cross-Linked Structures and Protein Thiols.
    Abdallah HM; El-Bassossy H; Mohamed GA; El-Halawany AM; Alshali KZ; Banjar ZM
    Molecules; 2016 Feb; 21(2):251. PubMed ID: 26907243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of oxidative stress in the long-term glycation of LDL.
    Menzel EJ; Sobal G; Staudinger A
    Biofactors; 1997; 6(2):111-24. PubMed ID: 9259992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.