BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 9038163)

  • 1. Identification of the naturally occurring flavin of nitroalkane oxidase from fusarium oxysporum as a 5-nitrobutyl-FAD and conversion of the enzyme to the active FAD-containing form.
    Gadda G; Edmondson RD; Russell DH; Fitzpatrick PF
    J Biol Chem; 1997 Feb; 272(9):5563-70. PubMed ID: 9038163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical and physical characterization of the active FAD-containing form of nitroalkane oxidase from Fusarium oxysporum.
    Gadda G; Fitzpatrick PF
    Biochemistry; 1998 Apr; 37(17):6154-64. PubMed ID: 9558355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of nitroalkane oxidase: insights into the reaction mechanism from a covalent complex of the flavoenzyme trapped during turnover.
    Nagpal A; Valley MP; Fitzpatrick PF; Orville AM
    Biochemistry; 2006 Jan; 45(4):1138-50. PubMed ID: 16430210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iso-mechanism of nitroalkane oxidase: 1. Inhibition studies and activation by imidazole.
    Gadda G; Fitzpatrick PF
    Biochemistry; 2000 Feb; 39(6):1400-5. PubMed ID: 10684620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of nitroalkane oxidase: 2. pH and kinetic isotope effects.
    Gadda G; Fitzpatrick PF
    Biochemistry; 2000 Feb; 39(6):1406-10. PubMed ID: 10684621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of intermediates in the nitroalkane oxidase reaction.
    Héroux A; Bozinovski DM; Valley MP; Fitzpatrick PF; Orville AM
    Biochemistry; 2009 Apr; 48(15):3407-16. PubMed ID: 19265437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of an essential tyrosine residue in nitroalkane oxidase by modification with tetranitromethane.
    Gadda G; Banerjee A; Fitzpatrick PF
    Biochemistry; 2000 Feb; 39(5):1162-8. PubMed ID: 10653664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a cysteine residue in the active site of nitroalkane oxidase by modification with N-ethylmaleimide.
    Gadda G; Banerjee A; Dangott LJ; Fitzpatrick PF
    J Biol Chem; 2000 Oct; 275(41):31891-5. PubMed ID: 10913134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishing the kinetic competency of the cationic imine intermediate in nitroalkane oxidase.
    Valley MP; Tichy SE; Fitzpatrick PF
    J Am Chem Soc; 2005 Feb; 127(7):2062-6. PubMed ID: 15713081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic properties of Escherichia coli UDP-N-acetylenolpyruvylglucosamine reductase.
    Axley MJ; Fairman R; Yanchunas J; Villafranca JJ; Robertson JG
    Biochemistry; 1997 Jan; 36(4):812-22. PubMed ID: 9020779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate specificity of a nitroalkane-oxidizing enzyme.
    Gadda G; Fitzpatrick PF
    Arch Biochem Biophys; 1999 Mar; 363(2):309-13. PubMed ID: 10068453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrometric evidence for the flavin-1-phenylcyclopropylamine inactivator adduct with monoamine oxidase N.
    Mitchell DJ; Nikolic D; Rivera E; Sablin SO; Choi S; van Breemen RB; Singer TP; Silverman RB
    Biochemistry; 2001 May; 40(18):5447-56. PubMed ID: 11331009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning of nitroalkane oxidase from Fusarium oxysporum identifies a new member of the acyl-CoA dehydrogenase superfamily.
    Daubner SC; Gadda G; Valley MP; Fitzpatrick PF
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2702-7. PubMed ID: 11867731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for direct interaction between cysteine 138 and the flavin in thioredoxin reductase. A study using flavin analogs.
    Prongay AJ; Williams CH
    J Biol Chem; 1990 Nov; 265(31):18968-75. PubMed ID: 2229055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme-Mediated Conversion of Flavin Adenine Dinucleotide (FAD) to 8-Formyl FAD in Formate Oxidase Results in a Modified Cofactor with Enhanced Catalytic Properties.
    Robbins JM; Souffrant MG; Hamelberg D; Gadda G; Bommarius AS
    Biochemistry; 2017 Jul; 56(29):3800-3807. PubMed ID: 28640638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of nitroalkane oxidase upon mutation of the active site base and rescue with a deprotonated substrate.
    Valley MP; Fitzpatrick PF
    J Am Chem Soc; 2003 Jul; 125(29):8738-9. PubMed ID: 12862464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction of 2-thio-FAD-reconstituted p-hydroxybenzoate hydroxylase with hydrogen peroxide. Formation of a covalent flavin-protein linkage.
    Claiborne A; Hemmerich P; Massey V; Lawton R
    J Biol Chem; 1983 May; 258(9):5433-9. PubMed ID: 6853525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. D-aspartate oxidase from beef kidney. Purification and properties.
    Negri A; Massey V; Williams CH
    J Biol Chem; 1987 Jul; 262(21):10026-34. PubMed ID: 3611051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies of the flavin adenine dinucleotide binding region in Escherichia coli pyruvate oxidase.
    Mather M; Schopfer LM; Massey V; Gennis RB
    J Biol Chem; 1982 Nov; 257(21):12887-92. PubMed ID: 6752143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.