BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 9038350)

  • 1. Anaerobic carotenoid biosynthesis in Rhodobacter sphaeroides 2.4.1: H2O is a source of oxygen for the 1-methoxy group of spheroidene but not for the 2-oxo group of spheroidenone.
    Yeliseev AA; Kaplan S
    FEBS Lett; 1997 Feb; 403(1):10-4. PubMed ID: 9038350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential carotenoid composition of the B875 and B800-850 photosynthetic antenna complexes in Rhodobacter sphaeroides 2.4.1: involvement of spheroidene and spheroidenone in adaptation to changes in light intensity and oxygen availability.
    Yeliseev AA; Eraso JM; Kaplan S
    J Bacteriol; 1996 Oct; 178(20):5877-83. PubMed ID: 8830681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoprotection in a purple phototrophic bacterium mediated by oxygen-dependent alteration of carotenoid excited-state properties.
    Šlouf V; Chábera P; Olsen JD; Martin EC; Qian P; Hunter CN; Polívka T
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8570-5. PubMed ID: 22586075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway.
    Chi SC; Mothersole DJ; Dilbeck P; Niedzwiedzki DM; Zhang H; Qian P; Vasilev C; Grayson KJ; Jackson PJ; Martin EC; Li Y; Holten D; Neil Hunter C
    Biochim Biophys Acta; 2015 Feb; 1847(2):189-201. PubMed ID: 25449968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carotenoid biosynthesis in Rhodopseudomonas spheroides. S-adenosylmethionine as the methylating agent in the biosynthesis of spheroidene and spheroidenone.
    Singh RK; Britton G; Goodwin TW
    Biochem J; 1973 Oct; 136(2):413-9. PubMed ID: 4544066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triplet energy transfer between the primary donor and carotenoids in Rhodobacter sphaeroides R-26.1 reaction centers incorporated with spheroidene analogs having different extents of pi-electron conjugation.
    Farhoosh R; Chynwat V; Gebhard R; Lugtenburg J; Frank HA
    Photochem Photobiol; 1997 Jul; 66(1):97-104. PubMed ID: 9230708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering purple bacterial carotenoid biosynthesis to study the roles of carotenoids in light-harvesting complexes.
    Sutherland GA; Qian P; Hunter CN; Swainsbury DJK; Hitchcock A
    Methods Enzymol; 2022; 674():137-184. PubMed ID: 36008006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights into the photochemistry of carotenoid spheroidenone in light-harvesting complex 2 from the purple bacterium Rhodobacter sphaeroides.
    Niedzwiedzki DM; Dilbeck PL; Tang Q; Martin EC; Bocian DF; Hunter CN; Holten D
    Photosynth Res; 2017 Mar; 131(3):291-304. PubMed ID: 27854005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for the role of redox carriers in photosynthesis gene expression and carotenoid biosynthesis in Rhodobacter sphaeroides 2.4.1.
    O'Gara JP; Kaplan S
    J Bacteriol; 1997 Mar; 179(6):1951-61. PubMed ID: 9068641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of B800 in carotenoid-bacteriochlorophyll energy and electron transfer in LH2 complexes from the purple bacterium Rhodobacter sphaeroides.
    Polívka T; Niedzwiedzki D; Fuciman M; Sundström V; Frank HA
    J Phys Chem B; 2007 Jun; 111(25):7422-31. PubMed ID: 17547450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of carotenoids on reaction centers from Rhodopseudomonas sphaeroides R 26.
    Agalidis I; Lutz M; Reiss-Husson F
    Biochim Biophys Acta; 1980 Feb; 589(2):264-74. PubMed ID: 6986910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The derivation of the oxygen atoms of the 13(1)-oxo and 3-acetyl groups of bacteriochlorophyll a from water in Rhodobacter sphaeroides cells adapting from respiratory to photosynthetic conditions: evidence for an anaerobic pathway for the formation of isocyclic ring E.
    Porra RJ; Schäfer W; Katheder I; Scheer H
    FEBS Lett; 1995 Aug; 371(1):21-4. PubMed ID: 7664876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Configuration of spheroidene in the photosynthetic reaction center of Rhodobacter sphaeroides : a comparison of wild-type and reconstituted R26.
    Mathies G; van Hemert MC; Gast P; Gupta KB; Frank HA; Lugtenburg J; Groenen EJ
    J Phys Chem A; 2011 Sep; 115(34):9552-6. PubMed ID: 21604722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of spheroidene and spheroidenone into light-harvesting complexes from purple sulfur bacteria.
    Ashikhmin A; Makhneva Z; Bolshakov M; Moskalenko A
    J Photochem Photobiol B; 2017 May; 170():99-107. PubMed ID: 28411470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introduction of new carotenoids into the bacterial photosynthetic apparatus by combining the carotenoid biosynthetic pathways of Erwinia herbicola and Rhodobacter sphaeroides.
    Hunter CN; Hundle BS; Hearst JE; Lang HP; Gardiner AT; Takaichi S; Cogdell RJ
    J Bacteriol; 1994 Jun; 176(12):3692-7. PubMed ID: 8206847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of the two carbonyl oxygens of bacteriochlorophyll a. Demonstration of two different pathways for the formation of ring E in Rhodobacter sphaeroides and Roseobacter denitrificans, and a common hydratase mechanism for 3-acetyl group formation.
    Porra RJ; Schäfer W; Gad'on N; Katheder I; Drews G; Scheer H
    Eur J Biochem; 1996 Jul; 239(1):85-92. PubMed ID: 8706723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized Rhodobacter sphaeroides for the Production of Antioxidants and the Pigments with Antioxidant Activity.
    Lee S; Yu J; Kim YH; Min J
    Mol Biotechnol; 2023 Jan; 65(1):131-135. PubMed ID: 35945473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective repression of light harvesting complex 2 formation in Rhodobacter azotoformans by light under semiaerobic conditions.
    Yue H; Zhao C; Li K; Yang S
    J Basic Microbiol; 2015 Nov; 55(11):1319-25. PubMed ID: 26193456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early steps in carotenoid biosynthesis: sequences and transcriptional analysis of the crtI and crtB genes of Rhodobacter sphaeroides and overexpression and reactivation of crtI in Escherichia coli and R. sphaeroides.
    Lang HP; Cogdell RJ; Gardiner AT; Hunter CN
    J Bacteriol; 1994 Jul; 176(13):3859-69. PubMed ID: 8021167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stark effect spectroscopy of carotenoids in photosynthetic antenna and reaction center complexes.
    Gottfried DS; Steffen MA; Boxer SG
    Biochim Biophys Acta; 1991 Aug; 1059(1):76-90. PubMed ID: 1873299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.