These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 9038882)

  • 21. Cholecystokinin inhibits gastric motility and emptying via a capsaicin-sensitive vagal pathway in rats.
    Raybould HE; Taché Y
    Am J Physiol; 1988 Aug; 255(2 Pt 1):G242-6. PubMed ID: 3136661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protection induced by cholecystokinin-8 (CCK-8) in ethanol-induced gastric lesions is mediated via vagal capsaicin-sensitive fibres and CCKA receptors.
    Evangelista S; Maggi CA
    Br J Pharmacol; 1991 Jan; 102(1):119-22. PubMed ID: 2043917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Abdominal vagal mediation of the satiety effects of exogenous and endogenous cholecystokinin in rats.
    Reidelberger RD
    Am J Physiol; 1992 Dec; 263(6 Pt 2):R1354-8. PubMed ID: 1481948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of endogenous cholecystokinin in the sensory transduction of luminal nutrient signals in the rat jejunum.
    Eastwood C; Maubach K; Kirkup AJ; Grundy D
    Neurosci Lett; 1998 Oct; 254(3):145-8. PubMed ID: 10214978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vagal afferent-dependent cholecystokinin modulation of visceral pain requires central amygdala NMDA-NR2B receptors in rats.
    Wang EM; Li WT; Yan XJ; Chen X; Liu Q; Feng CC; Cao ZJ; Fang JY; Chen SL
    Neurogastroenterol Motil; 2015 Sep; 27(9):1333-43. PubMed ID: 26197883
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Capsaicin application to central or peripheral vagal fibers attenuates CCK satiety.
    South EH; Ritter RC
    Peptides; 1988; 9(3):601-12. PubMed ID: 3420015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CCK elicits and modulates vagal afferent activity arising from gastric and duodenal sites.
    Schwartz GJ; Moran TH
    Ann N Y Acad Sci; 1994 Mar; 713():121-8. PubMed ID: 8185153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of L364718 on interdigestive pancreatic exocrine secretion and gastroduodenal motility in conscious sheep.
    Onaga T; Mineo H; Kato S
    Regul Pept; 1997 Jan; 68(2):139-46. PubMed ID: 9110386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cholecystokinin/Cholecystokinin-1 receptor-mediated peripheral activation of the afferent vagus by enteral nutrients attenuates inflammation in rats.
    Lubbers T; de Haan JJ; Luyer MD; Verbaeys I; Hadfoune M; Dejong CH; Buurman WA; Greve JW
    Ann Surg; 2010 Aug; 252(2):376-82. PubMed ID: 20585240
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Both afferent and efferent nerves are implicated in cholecytokinin motor actions in the small intestine of the rat.
    Giralt M; Vergara P
    Regul Pept; 1999 May; 81(1-3):73-80. PubMed ID: 10395411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Apolipoprotein A-IV stimulates duodenal vagal afferent activity to inhibit gastric motility via a CCK1 pathway.
    Glatzle J; Darcel N; Rechs AJ; Kalogeris TJ; Tso P; Raybould HE
    Am J Physiol Regul Integr Comp Physiol; 2004 Aug; 287(2):R354-9. PubMed ID: 15117731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cholecystokinin activates both A- and C-type vagal afferent neurons.
    Simasko SM; Ritter RC
    Am J Physiol Gastrointest Liver Physiol; 2003 Dec; 285(6):G1204-13. PubMed ID: 12946940
    [TBL] [Abstract][Full Text] [Related]  

  • 33. c-fos expression in specific rat brain nuclei after intestinal anaphylaxis: involvement of 5-HT3 receptors and vagal afferent fibers.
    Castex N; Fioramonti J; Fargeas MJ; Bueno L
    Brain Res; 1995 Aug; 688(1-2):149-60. PubMed ID: 8542301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of exocrine pancreatic secretion by leptin through CCK(1)-receptors and afferent vagal fibres in the rat.
    Guilmeau S; Nagain-Domaine C; Buyse M; Tsocas A; Rozé C; Bado A
    Eur J Pharmacol; 2002 Jun; 447(1):99-107. PubMed ID: 12106809
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Response of the gastric vagal afferent activity to cholecystokinin in rats lacking type A cholecystokinin receptors.
    Kurosawa M; Bucinskaite V; Taniguchi T; Miyasaka K; Funakoshi A; Lundeberg T
    J Auton Nerv Syst; 1999 Jan; 75(1):51-9. PubMed ID: 9935269
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prolonged intestinal afferent nerve discharge in response to cholecystokinin-58 compared to cholecystokinin-8 in rats.
    Kreis ME; Zittel TT; Raybould HE; Reeve JR; Grundy D
    Neurosci Lett; 1997 Jul; 230(2):89-92. PubMed ID: 9259471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anti-inflammatory effects of leptin and cholecystokinin on acetic acid-induced colitis in rats: role of capsaicin-sensitive vagal afferent fibers.
    Bozkurt A; Cakir B; Ercan F; Yeğen BC
    Regul Pept; 2003 Nov; 116(1-3):109-18. PubMed ID: 14599722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cholecystokinin inhibits gastric acid secretion through type "A" cholecystokinin receptors and somatostatin in rats.
    Lloyd KC; Raybould HE; Walsh JH
    Am J Physiol; 1992 Sep; 263(3 Pt 1):G287-92. PubMed ID: 1357976
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Induction of postprandial intestinal motility and release of cholecystokinin by polyamines in rats.
    Fioramonti J; Fargeas MJ; Bertrand V; Pradayrol L; Buéno L
    Am J Physiol; 1994 Dec; 267(6 Pt 1):G960-5. PubMed ID: 7810663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of the migrating myoelectric complexes by cholecystokinin and gastrin in the gastrointestinal tract of chickens.
    Martínez V; Jiménez M; Goñalons E; Vergara P
    Poult Sci; 1995 Mar; 74(3):563-76. PubMed ID: 7761341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.