BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 9039103)

  • 1. Role of nitric oxide in modulating the long-term renal and hypertensive actions of norepinephrine.
    Granger J; Schnackenberg C; Novak J; Tucker B; Miller T; Morgan S; Kassab S
    Hypertension; 1997 Jan; 29(1 Pt 2):205-9. PubMed ID: 9039103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of nitric oxide in long-term angiotensin II-induced renal vasoconstriction.
    Manning RD; Hu L; Mizelle HL; Granger JP
    Hypertension; 1993 Jun; 21(6 Pt 2):949-55. PubMed ID: 8505105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preservation of renal function by angiotensin during chronic adrenergic stimulation.
    Lohmeier TE; Yang HM
    Hypertension; 1991 Mar; 17(3):278-87. PubMed ID: 1999358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of nitric oxide in modulating renal function and arterial pressure during chronic aldosterone excess.
    Granger JP; Kassab S; Novak J; Reckelhoff JF; Tucker B; Miller MT
    Am J Physiol; 1999 Jan; 276(1):R197-202. PubMed ID: 9887195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between angiotensin II and nitric oxide in control of renal hemodynamics in conscious dogs.
    Alberola AM; Salazar FJ; Nakamura T; Granger JP
    Am J Physiol; 1994 Dec; 267(6 Pt 2):R1472-8. PubMed ID: 7810755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of intrarenal NO stimulates renin secretion through a macula densa-mediated mechanism.
    Schnackenberg CG; Tabor BL; Strong MH; Granger JP
    Am J Physiol; 1997 Mar; 272(3 Pt 2):R879-86. PubMed ID: 9087651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of nitric oxide and cyclooxygenase-2 in regulating the renal hemodynamic response to norepinephrine.
    López R; Llinas MT; Roig F; Salazar FJ
    Am J Physiol Regul Integr Comp Physiol; 2003 Feb; 284(2):R488-93. PubMed ID: 12388442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of renal hemodynamics during intrarenal and systemic blockade of nitric oxide synthesis in conscious dogs.
    Granger JP; Alberola AM; Salazar FJ; Nakamura T
    J Cardiovasc Pharmacol; 1992; 20 Suppl 12():S160-2. PubMed ID: 1282957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative roles of nitric oxide, prostanoids and angiotensin II in the regulation of canine glomerular hemodynamics. A micropuncture study.
    Kramer HJ; Horacek V; Bäcker A; Vaneckova I; Heller J
    Kidney Blood Press Res; 2004; 27(1):10-7. PubMed ID: 14583658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of norepinephrine and angiotensin II-induced renal effects by NG-nitro-L-arginine, a nitric oxide synthase inhibitor.
    Matsumura Y; Egi Y; Maekawa H; Miura A; Murata S; Morimoto S
    Biol Pharm Bull; 1995 Apr; 18(4):496-500. PubMed ID: 7544660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of nitric oxide in the arterial pressure and renal adaptations to long-term changes in sodium intake.
    Manning RD; Hu L; Reckelhoff JF
    Am J Physiol; 1997 Apr; 272(4 Pt 2):R1162-9. PubMed ID: 9140016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of angiotensin in ameliorating the renal actions of norepinephrine.
    Yang HM; Lohmeier TE
    Am J Physiol; 1991 Dec; 261(6 Pt 2):R1497-506. PubMed ID: 1750573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiovascular-renal responses to long-term nitric oxide inhibition during angiotensin II-AT1 receptor inhibition.
    Manning RD; Hu L
    Am J Hypertens; 1998 Mar; 11(3 Pt 1):328-39. PubMed ID: 9544874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of nitric oxide in modulating the vasoconstrictor actions of angiotensin II in preglomerular and postglomerular vessels in dogs.
    Schnackenberg CG; Wilkins FC; Granger JP
    Hypertension; 1995 Dec; 26(6 Pt 2):1024-9. PubMed ID: 7498961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal influence of the renal nerves on renal excretory function during chronic inhibition of nitric oxide synthesis.
    Reinhart GA; Lohmeier TE; Mizelle HL
    Hypertension; 1997 Jan; 29(1 Pt 2):199-204. PubMed ID: 9039102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in renal vascular sensitivity and arterial pressure associated with sodium intake during long-term intrarenal norepinephrine infusion in dogs.
    Cowley AW; Lohmeier TE
    Hypertension; 1979; 1(6):549-58. PubMed ID: 396248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of nitric oxide in endothelin ETB receptor-mediated inhibitory actions on antidiuresis and norepinephrine overflow induced by stimulation of renal nerves in anesthetized dogs.
    Matsuo G; Matsumura Y; Tadano K; Hashimoto T; Morimoto S
    J Cardiovasc Pharmacol; 1997 Sep; 30(3):325-31. PubMed ID: 9300316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide synthase blockade and renal vascular responses to norepinephrine and endothelin-1 in conscious dogs.
    Fitzgerald SM; Evans RG; Christy IJ; Anderson WP
    J Cardiovasc Pharmacol; 1995 Jun; 25(6):979-85. PubMed ID: 7564345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of NO synthesis enhances chronic cardiovascular and renal actions of leptin.
    Kuo JJ; Jones OB; Hall JE
    Hypertension; 2001 Feb; 37(2 Pt 2):670-6. PubMed ID: 11230354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of nitric oxide in the renal hemodynamic response to a meat meal.
    Salazar FJ; Alberola A; Nakamura T; Granger JP
    Am J Physiol; 1994 Oct; 267(4 Pt 2):R1050-5. PubMed ID: 7943415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.