These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 9039104)

  • 41. Inhibition of prostaglandin E2 secretion. Failure to abolish autoregulation in the isolated dog kidney.
    Kaloyanides GJ; Ahrens RE; Shepherd JA; DiBona GF
    Circ Res; 1976 Feb; 38(2):67-73. PubMed ID: 1245022
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Early effects of renal denervation in the anaesthetised rat: natriuresis and increased cortical blood flow.
    Kompanowska-Jezierska E; Walkowska A; Johns EJ; Sadowski J
    J Physiol; 2001 Mar; 531(Pt 2):527-34. PubMed ID: 11230524
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Control of the renal medullary circulation by vasopressin V1 and V2 receptors in the rat.
    Cowley AW
    Exp Physiol; 2000 Mar; 85 Spec No():223S-231S. PubMed ID: 10795926
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Renal autoregulation and pressure natriuresis during ANF-induced diuresis.
    Paul RV; Kirk KA; Navar LG
    Am J Physiol; 1987 Sep; 253(3 Pt 2):F424-31. PubMed ID: 2957927
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Diversity of responses of renal cortical and medullary blood flow to vasoconstrictors in conscious rabbits.
    Evans RG; Madden AC; Denton KM
    Acta Physiol Scand; 2000 Aug; 169(4):297-308. PubMed ID: 10951121
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nitric oxide blockade enhances renal responses to superoxide dismutase inhibition in dogs.
    Majid DS; Nishiyama A
    Hypertension; 2002 Feb; 39(2):293-7. PubMed ID: 11847200
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Mar; 43(3):577-86. PubMed ID: 16520177
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modification of carotid chemoreceptor-induced changes in renal haemodynamics and function by carotid baroreflex in dogs.
    Karim F; al-Obaidi M
    J Physiol; 1993 Jul; 466():599-610. PubMed ID: 8410708
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chronic sodium-potassium-ATPase inhibition with ouabain impairs renal haemodynamics and pressure natriuresis in the rat.
    Kurashina T; Kirchner KA; Granger JP; Patel AR
    Clin Sci (Lond); 1996 Oct; 91(4):497-502. PubMed ID: 8983876
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of verapamil on regional renal blood flow: a study using multichannel laser-Doppler flowmetry.
    Hansell P; Nygren A; Ueda J
    Acta Physiol Scand; 1990 May; 139(1):15-20. PubMed ID: 2192538
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinin actions on renal papillary blood flow and sodium excretion.
    Mattson DL; Cowley AW
    Hypertension; 1993 Jun; 21(6 Pt 2):961-5. PubMed ID: 8505107
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of nitric oxide in renal papillary blood flow and sodium excretion.
    Mattson DL; Roman RJ; Cowley AW
    Hypertension; 1992 Jun; 19(6 Pt 2):766-9. PubMed ID: 1592478
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Renal medullary tissue oxygenation is dependent on both cortical and medullary blood flow.
    O'Connor PM; Kett MM; Anderson WP; Evans RG
    Am J Physiol Renal Physiol; 2006 Mar; 290(3):F688-94. PubMed ID: 16219913
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2005 Sep; 42(3):524-31. PubMed ID: 16171601
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of nitric oxide on papillary blood flow and pressure natriuresis.
    Fenoy FJ; Ferrer P; Carbonell L; GarcĂ­a-Salom M
    Hypertension; 1995 Mar; 25(3):408-14. PubMed ID: 7875767
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Disparate roles of AT2 receptors in the renal cortical and medullary circulations of anesthetized rabbits.
    Duke LM; Eppel GA; Widdop RE; Evans RG
    Hypertension; 2003 Aug; 42(2):200-5. PubMed ID: 12847115
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protective effect of angiotensin II-induced increase in nitric oxide in the renal medullary circulation.
    Zou AP; Wu F; Cowley AW
    Hypertension; 1998 Jan; 31(1 Pt 2):271-6. PubMed ID: 9453315
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Natriuretic peptide receptor A mediates renal sodium excretory responses to blood volume expansion.
    Shi SJ; Vellaichamy E; Chin SY; Smithies O; Navar LG; Pandey KN
    Am J Physiol Renal Physiol; 2003 Oct; 285(4):F694-702. PubMed ID: 12824076
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of renal medullary heme oxygenase in the regulation of pressure natriuresis and arterial blood pressure.
    Li N; Yi F; dos Santos EA; Donley DK; Li PL
    Hypertension; 2007 Jan; 49(1):148-54. PubMed ID: 17075028
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of bradykinin and papaverine on renal autoregulation and renin release in the anaesthetized dog.
    Bugge JF; Stokke ES; Kiil F
    Acta Physiol Scand; 1991 Dec; 143(4):431-7. PubMed ID: 1815477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.