BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 9039569)

  • 1. Growth and survival kinetics of Yersinia enterocolitica IP 383 0:9 as affected by equimolar concentrations of undissociated short-chain organic acids.
    el-Ziney MG; De Meyer H; Debevere JM
    Int J Food Microbiol; 1997 Mar; 34(3):233-47. PubMed ID: 9039569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of interactions of lactic acid, pH and atmosphere on the growth and survival of Yersinia enterocolitica IP 383 O:9 at 4 degrees C.
    el-Ziney MG; De Meyer H; Debevere JM
    Int J Food Microbiol; 1995 Oct; 27(2-3):229-44. PubMed ID: 8579992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimal inhibitory concentrations of undissociated lactic, acetic, citric and propionic acid for Listeria monocytogenes under conditions relevant to cheese.
    Wemmenhove E; van Valenberg HJ; Zwietering MH; van Hooijdonk TC; Wells-Bennik MH
    Food Microbiol; 2016 Sep; 58():63-7. PubMed ID: 27217360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of enterobacteria and Listeria growth by lactic, acetic and formic acids.
    Ostling CE; Lindgren SE
    J Appl Bacteriol; 1993 Jul; 75(1):18-24. PubMed ID: 8365950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comparison of demineralization of different organic acid to enamel].
    Liu L; Yue S; Jiang H; Lu T
    Hua Xi Kou Qiang Yi Xue Za Zhi; 1998 May; 16(2):103-4, 113. PubMed ID: 12214404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of pH, temperature and organic acids on the initiation of growth of Yersinia enterocolitica.
    Brocklehurst TF; Lund BM
    J Appl Bacteriol; 1990 Sep; 69(3):390-7. PubMed ID: 2246144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation kinetics of Yersinia enterocolitica by citric and lactic acid at different temperatures.
    Virto R; Sanz D; Alvarez I; Condón ; Raso J
    Int J Food Microbiol; 2005 Sep; 103(3):251-7. PubMed ID: 16099310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling the effect of pH, acidulant and temperature on the growth rate of Yersinia enterocolitica.
    Adams MR; Little CL; Easter MC
    J Appl Bacteriol; 1991 Jul; 71(1):65-71. PubMed ID: 1894580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying Effect of Lactic, Acetic, and Propionic Acids on Growth of Molds Isolated from Spoiled Bakery Products.
    Dagnas S; Gauvry E; Onno B; Membré JM
    J Food Prot; 2015 Sep; 78(9):1689-98. PubMed ID: 26319723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of acid-adapted and acid-shocked Shigella flexneri to reduced pH achieved with acetic, lactic, and propionic acids.
    Tetteh GL; Beuchat LR
    J Food Prot; 2001 Jul; 64(7):975-81. PubMed ID: 11456206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antifungal effect of dairy propionibacteria--contribution of organic acids.
    Lind H; Jonsson H; Schnürer J
    Int J Food Microbiol; 2005 Feb; 98(2):157-65. PubMed ID: 15681043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling Yersinia enterocolitica inactivation in coculture experiments with Lactobacillus sakei as based on pH and lactic acid profiles.
    Janssen M; Geeraerd AH; Logist F; De Visscher Y; Vereecken KM; Debevere J; Devlieghere F; Van Impe JF
    Int J Food Microbiol; 2006 Aug; 111(1):59-72. PubMed ID: 16876279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of temperature and organic matter on the bactericidal activity of short-chain organic acids on salmonellas.
    Cherrington CA; Allen V; Hinton M
    J Appl Bacteriol; 1992 Jun; 72(6):500-3. PubMed ID: 1644707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of acid production in Streptococcus mutans R9 by formic acid.
    Assinder SJ; Popiel HA
    FEMS Microbiol Lett; 1996 Oct; 143(2-3):229-33. PubMed ID: 8837476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of short-chain monocarboxylic acids by the yeast Torulaspora delbrueckii: specificity of the transport systems and their regulation.
    Casal M; Leão C
    Biochim Biophys Acta; 1995 Jun; 1267(2-3):122-30. PubMed ID: 7612664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of sodium bicarbonate, vinegar, acetic and citric acids on growth and survival of Yersinia enterocolitica.
    Karapinar M; Gönül SA
    Int J Food Microbiol; 1992 Aug; 16(4):343-7. PubMed ID: 1333784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical modelling of the growth, survival and death of Yersinia enterocolitica.
    Jones JE; Walker SJ; Sutherland JP; Peck MW; Little CL
    Int J Food Microbiol; 1994 Nov; 23(3-4):433-47. PubMed ID: 7873342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectiveness of various disinfectants in the elimination of Yersinia enterocolitica on fresh lettuce.
    Escudero ME; Velázquez L; Di Genaro MS; de Guzmán AM
    J Food Prot; 1999 Jun; 62(6):665-9. PubMed ID: 10382658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetic, lactic and citric acids and pH inhibition of Listeria monocytogenes Scott A and the effect on intracellular pH.
    Young KM; Foegeding PM
    J Appl Bacteriol; 1993 May; 74(5):515-20. PubMed ID: 8486558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the growth kinetics of Listeria as a function of temperature, pH and organic acid concentration.
    Le Marc Y; Huchet V; Bourgeois CM; Guyonnet JP; Mafart P; Thuault D
    Int J Food Microbiol; 2002 Mar; 73(2-3):219-37. PubMed ID: 11934031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.