These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 9039751)

  • 1. Limitations of quasi-static estimation of human joint loading during locomotion.
    Wu G; Ladin Z
    Med Biol Eng Comput; 1996 Nov; 34(6):472-6. PubMed ID: 9039751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of the lower limbs during walking: what information can be gained from a three-dimensional model?
    Eng JJ; Winter DA
    J Biomech; 1995 Jun; 28(6):753-8. PubMed ID: 7601875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moment measurements in dynamic and quasi-static spine segment testing using eccentric compression are susceptible to artifacts based on loading configuration.
    Van Toen C; Carter JW; Oxland TR; Cripton PA
    J Biomech Eng; 2014 Dec; 136(12):124505. PubMed ID: 25322158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetrical loading affects intersegmental dynamics during the swing phase of walking.
    Smith JD; Royer TD; Martin PE
    Hum Mov Sci; 2013 Aug; 32(4):652-67. PubMed ID: 24054901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors.
    Khurelbaatar T; Kim K; Lee S; Kim YH
    Gait Posture; 2015 Jun; 42(1):65-9. PubMed ID: 25957652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tendon action of two-joint muscles: transfer of mechanical energy between joints during jumping, landing, and running.
    Prilutsky BI; Zatsiorsky VM
    J Biomech; 1994 Jan; 27(1):25-34. PubMed ID: 8106533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The three-dimensional determination of internal loads in the lower extremity.
    Glitsch U; Baumann W
    J Biomech; 1997; 30(11-12):1123-31. PubMed ID: 9456380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of mechanical energy expenditure of joint moments and muscle forces during human locomotion.
    Prilutsky BI; Petrova LN; Raitsin LM
    J Biomech; 1996 Apr; 29(4):405-15. PubMed ID: 8964770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical analysis of the relation between movement time and joint moment development during a sit-to-stand task.
    Yoshioka S; Nagano A; Hay DC; Fukashiro S
    Biomed Eng Online; 2009 Oct; 8():27. PubMed ID: 19849859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of walking speed on lower extremity joint loading in graded ramp walking.
    Schwameder H; Lindenhofer E; Müller E
    Sports Biomech; 2005 Jul; 4(2):227-43. PubMed ID: 16138659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lower-limb joint work and power are modulated during load carriage based on load configuration and walking speed.
    Lenton GK; Doyle TLA; Lloyd DG; Higgs J; Billing D; Saxby DJ
    J Biomech; 2019 Jan; 83():174-180. PubMed ID: 30527387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait strategies to reduce the dynamic joint load in the lower limbs during a loading response in young healthy adults.
    Tajima T; Tateuchi H; Koyama Y; Ikezoe T; Ichihashi N
    Hum Mov Sci; 2018 Apr; 58():260-267. PubMed ID: 29524851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dynamics of quadrupedal locomotion.
    Pandy MG; Kumar V; Berme N; Waldron KJ
    J Biomech Eng; 1988 Aug; 110(3):230-7. PubMed ID: 3172744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of lower extremity joint stiffness, work and power at different walking and running speeds.
    Jin L; Hahn ME
    Hum Mov Sci; 2018 Apr; 58():1-9. PubMed ID: 29331489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biomechanical stress analysis of the lower extremity].
    Siebertz K; Baumann W
    Biomed Tech (Berl); 1994 Sep; 39(9):216-21. PubMed ID: 7948665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint-level mechanics of the walk-to-run transition in humans.
    Pires NJ; Lay BS; Rubenson J
    J Exp Biol; 2014 Oct; 217(Pt 19):3519-27. PubMed ID: 25104752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensations during Unsteady Locomotion.
    Qiao M; Jindrich DL
    Integr Comp Biol; 2014 Dec; 54(6):1109-21. PubMed ID: 24948138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrasting roles of inertial and muscle moments at knee and ankle during paw-shake response.
    Hoy MG; Zernicke RF; Smith JL
    J Neurophysiol; 1985 Nov; 54(5):1282-94. PubMed ID: 4078617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone-on-bone forces during loaded and unloaded walking.
    Simonsen EB; Dyhre-Poulsen P; Voigt M; Aagaard P; Sjøgaard G; Bojsen-Møller F
    Acta Anat (Basel); 1995; 152(2):133-42. PubMed ID: 7660757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.