These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9040120)

  • 1. Symmetrical effects of amphetamine and alpha-flupenthixol on conditioned punishment and conditioned reinforcement: contrasts with midazolam.
    Killcross AS; Everitt BJ; Robins TW
    Psychopharmacology (Berl); 1997 Jan; 129(2):141-52. PubMed ID: 9040120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of ondansetron and alpha-flupenthixol on responding for conditioned reward.
    Fletcher PJ; Higgins GA
    Psychopharmacology (Berl); 1997 Nov; 134(1):64-72. PubMed ID: 9399368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The incentive amplifying effects of nicotine are reduced by selective and non-selective dopamine antagonists in rats.
    Palmatier MI; Kellicut MR; Brianna Sheppard A; Brown RW; Robinson DL
    Pharmacol Biochem Behav; 2014 Nov; 126():50-62. PubMed ID: 25230311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the conditioned reinforcing properties of a safety signal and appetitive stimulus: effects of d-amphetamine and anxiolytics.
    Fernando AB; Urcelay GP; Mar AC; Dickinson A; Robbins TW
    Psychopharmacology (Berl); 2013 May; 227(2):195-208. PubMed ID: 23299096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responding for conditioned reinforcement in C57BL/6 and CD-1 mice, and Sprague-Dawley rats: Effects of methylphenidate and amphetamine.
    Browne JD; Soko AD; Fletcher PJ
    Psychopharmacology (Berl); 2014 Dec; 231(23):4503-16. PubMed ID: 24804572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the neuroleptic alpha-flupenthixol on latent inhibition in aversively- and appetitively-motivated paradigms: evidence for dopamine-reinforcer interactions.
    Killcross AS; Dickinson A; Robbins TW
    Psychopharmacology (Berl); 1994 Jun; 115(1-2):196-205. PubMed ID: 7862895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of d-amphetamine, chlordiazepoxide, alpha-flupenthixol and behavioural manipulations on choice of signalled and unsignalled delayed reinforcement in rats.
    Cardinal RN; Robbins TW; Everitt BJ
    Psychopharmacology (Berl); 2000 Nov; 152(4):362-75. PubMed ID: 11140328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced appetitive conditioning following repeated pretreatment with d-amphetamine.
    Harmer CJ; Phillips GD
    Behav Pharmacol; 1998 Jul; 9(4):299-308. PubMed ID: 10065918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conditional control by midazolam and amphetamine in a rapid appetitive discrimination procedure.
    Maes JH; Vossen JM
    Eur J Pharmacol; 1997 Jan; 319(1):5-11. PubMed ID: 9030891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medial prefrontal cortex infusion of alpha-flupenthixol attenuates systemic d-amphetamine-induced disruption of conditional discrimination performance in rats.
    Dunn MJ; Killcross S
    Psychopharmacology (Berl); 2007 Jun; 192(3):347-55. PubMed ID: 17287939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attenuation of d-amphetamine-induced disruption of conditional discrimination performance by alpha-flupenthixol.
    Dunn MJ; Futter D; Bonardi C; Killcross S
    Psychopharmacology (Berl); 2005 Jan; 177(3):296-306. PubMed ID: 15448975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Psychopharmacology of latent inhibition: a neural network approach.
    Schmajuk NA; Buhusi CV; Gray JA
    Behav Pharmacol; 1998 Dec; 9(8):711-30. PubMed ID: 9890261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of the US pre-exposure effect and latent inhibition in two-way active avoidance by systemic amphetamine in C57BL/6 mice.
    Chang T; Meyer U; Feldon J; Yee BK
    Psychopharmacology (Berl); 2007 Apr; 191(2):211-21. PubMed ID: 17180617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Social defeat stress switches the neural system mediating benzodiazepine conditioned motivation.
    Riad-Allen L; van der Kooy D
    Behav Neurosci; 2013 Aug; 127(4):515-23. PubMed ID: 23731071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Psychopharmacological characterisation of the successive negative contrast effect in rats.
    Phelps CE; Mitchell EN; Nutt DJ; Marston HM; Robinson ES
    Psychopharmacology (Berl); 2015 Aug; 232(15):2697-709. PubMed ID: 25791190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The form of a conditioned stimulus can influence the degree to which it acquires incentive motivational properties.
    Meyer PJ; Cogan ES; Robinson TE
    PLoS One; 2014; 9(6):e98163. PubMed ID: 24905195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced responding for conditioned reward produced by intra-accumbens amphetamine is potentiated after cocaine sensitization.
    Taylor JR; Horger BA
    Psychopharmacology (Berl); 1999 Feb; 142(1):31-40. PubMed ID: 10102780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The reserpine-sensitive dopamine pool mediates (+)-amphetamine-conditioned reward in the place preference paradigm.
    Hiroi N; White NM
    Brain Res; 1990 Feb; 510(1):33-42. PubMed ID: 2322845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of sulpiride on amphetamine-induced disruption of overshadowing in the rat.
    O'Tuathaigh CP; Moran PM
    Prog Neuropsychopharmacol Biol Psychiatry; 2004 Dec; 28(8):1249-53. PubMed ID: 15588750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine antagonism does not impair learning of Pavlovian conditioned approach to manipulable or non-manipulable cues but biases responding towards goal tracking.
    Scülfort SA; Bartsch D; Enkel T
    Behav Brain Res; 2016 Nov; 314():1-5. PubMed ID: 27478141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.