These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 9040263)

  • 41. The vascular resistance of arterial stenoses in series.
    Kilpatrick D; Webber SD; Colle JP
    Angiology; 1990 Apr; 41(4):278-85. PubMed ID: 2339826
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Flow in a catheterized curved artery with stenosis.
    Dash RK; Jayaraman G; Mehta KN
    J Biomech; 1999 Jan; 32(1):49-61. PubMed ID: 10050951
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Computational analysis of stenosis geometry effects on right coronary hemodynamics.
    Caruso MV; De Rosa S; Indolfi C; Fragomeni G
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():981-4. PubMed ID: 26736428
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A zero-dimensional predictive model for the pressure drop in the stenotic coronary artery based on its geometric characteristics.
    Kim J; Jin D; Choi H; Kweon J; Yang DH; Kim YH
    J Biomech; 2020 Dec; 113():110076. PubMed ID: 33152635
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Turbulent pressure fluctuations on surface of model vascular stenoses.
    Loree HM; Kamm RD; Atkinson CM; Lee RT
    Am J Physiol; 1991 Sep; 261(3 Pt 2):H644-50. PubMed ID: 1887914
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Limitations of translesional pressure and flow velocity for long ostial left anterior descending stenoses.
    Kern MJ; Donohue TJ; Flynn MS; Aguirre FV; Bach RG; Caracciolo EA
    Cathet Cardiovasc Diagn; 1994 Sep; 33(1):50-4. PubMed ID: 8001103
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lessons from in vitro models of small, irregular, multiple and tunnel-like stenoses relevant to clinical stenoses of valves and small vessels.
    Popp RL; Teplitsky I
    J Am Coll Cardiol; 1989 Mar; 13(3):716-22. PubMed ID: 2645341
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hemodynamic evaluation of arterial stenoses by computer simulation.
    Kandarpa K; Davids N; Gardiner GA; Harrington DP; Selwyn A; Levin DC
    Invest Radiol; 1987 May; 22(5):393-403. PubMed ID: 3597007
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Translesional pressure-flow velocity assessment in patients: Part I.
    Kern MJ; Aguirre FV; Bach RG; Caracciolo EA; Donohue TJ
    Cathet Cardiovasc Diagn; 1994 Jan; 31(1):49-60. PubMed ID: 8118859
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A theoretical model of a compliant arterial stenosis.
    Santamore WP; Bove AA
    Am J Physiol; 1985 Feb; 248(2 Pt 2):H274-85. PubMed ID: 3970228
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Epicardial coronary blood flow including the presence of stenoses and aorto-coronary bypasses--I: Model and numerical method.
    Rooz E; Wiesner TF; Nerem RM
    J Biomech Eng; 1985 Nov; 107(4):361-7. PubMed ID: 3878435
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Experimental studies on coronary laser angioplasty.
    Tsuji Y; Okada M; Tsukube T; Mukai T; Morimoto M; Yoshida M; Nakamura K
    J Interv Cardiol; 1991; 4(1):21-2. PubMed ID: 10150918
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mathematical modelling of flow through an irregular arterial stenosis.
    Johnston PR; Kilpatrick D
    J Biomech; 1991; 24(11):1069-77. PubMed ID: 1761583
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sources of error in intra-arterial pressure measurements across a stenosis.
    McWilliams RG; Robertson I; Smye SW; Wijesinghe L; Kessel D
    Eur J Vasc Endovasc Surg; 1998 Jun; 15(6):535-40. PubMed ID: 9659891
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Radiofrequency thermal balloon angioplasty in an experimental model of peripheral arterial stenosis.
    Sreeram N; Townsend P; Morton DB
    Int J Cardiol; 2000 Jun; 74(1):25-32. PubMed ID: 10854677
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fractional Flow Assessment for the Evaluation of Intracranial Atherosclerosis: A Feasibility Study.
    Miao Z; Liebeskind DS; Lo W; Liu L; Pu Y; Leng X; Song L; Xu X; Jia B; Gao F; Mo D; Sun X; Liu L; Ma N; Wang B; Wang Y; Wang Y
    Interv Neurol; 2016 Jun; 5(1-2):65-75. PubMed ID: 27610123
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computer assessment of hemodynamic severity of coronary artery stenosis from angiograms.
    Siebes M; D'Argenio DZ; Selzer RH
    Comput Methods Programs Biomed; 1985 Nov; 21(2):143-52. PubMed ID: 3853488
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Translesional pressure and flow velocity after thrombolysis: assessment of suboptimal angioplasty for serial lesions.
    Moore JA; Donohue TJ; Kern MJ
    Cathet Cardiovasc Diagn; 1995 Dec; 36(4):344-9. PubMed ID: 8719388
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Correction to flow rate--pressure drop relation in coronary angioplasty: steady streaming effect.
    Sarkar A; Jayaraman G
    J Biomech; 1998 Sep; 31(9):781-91. PubMed ID: 9802778
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A geometry-based model for non-invasive estimation of pressure gradients over iliac artery stenoses.
    Heinen SGH; van den Heuvel DAF; de Vries JPPM; van de Vosse FN; Delhaas T; Huberts W
    J Biomech; 2019 Jul; 92():67-75. PubMed ID: 31202523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.