BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 9040702)

  • 1. Role of potassium channels in relaxations of isolated canine basilar arteries to acidosis.
    Kinoshita H; Katusic ZS
    Stroke; 1997 Feb; 28(2):433-7; discussion 437-8. PubMed ID: 9040702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of potassium channels in relaxations of canine middle cerebral arteries induced by nitric oxide donors.
    Onoue H; Katusic ZS
    Stroke; 1997 Jun; 28(6):1264-70; discussion 1270-1. PubMed ID: 9183360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of cerebral arterial relaxations to hydrogen peroxide.
    Iida Y; Katusic ZS
    Stroke; 2000 Sep; 31(9):2224-30. PubMed ID: 10978056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subarachnoid hemorrhage and the role of potassium channels in relaxations of canine basilar artery to nitrovasodilators.
    Onoue H; Katusic ZS
    J Cereb Blood Flow Metab; 1998 Feb; 18(2):186-95. PubMed ID: 9469162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery.
    White R; Hiley CR
    Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebrovascular vasodilation to extraluminal acidosis occurs via combined activation of ATP-sensitive and Ca2+-activated potassium channels.
    Lindauer U; Vogt J; Schuh-Hofer S; Dreier JP; Dirnagl U
    J Cereb Blood Flow Metab; 2003 Oct; 23(10):1227-38. PubMed ID: 14526233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of subarachnoid hemorrhage on mechanisms of vasodilation mediated by cyclic adenosine monophosphate.
    Onoue H; Katusic ZS
    J Neurosurg; 1998 Jul; 89(1):111-7. PubMed ID: 9647181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of endothelial nitric oxide and smooth muscle potassium channels in cerebral arteriolar dilation in response to acidosis.
    Horiuchi T; Dietrich HH; Hongo K; Goto T; Dacey RG
    Stroke; 2002 Mar; 33(3):844-9. PubMed ID: 11872913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP-sensitive potassium channels mediate dilatation of basilar artery in response to intracellular acidification in vivo.
    Santa N; Kitazono T; Ago T; Ooboshi H; Kamouchi M; Wakisaka M; Ibayashi S; Iida M
    Stroke; 2003 May; 34(5):1276-80. PubMed ID: 12677015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mild alkalinization and acidification differentially modify the effects of lidocaine or mexiletine on vasorelaxation mediated by ATP-sensitive K+ channels.
    Kinoshita H; Iranami H; Kimoto Y; Dojo M; Hatano Y
    Anesthesiology; 2001 Jul; 95(1):200-6. PubMed ID: 11465559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KATP-channel-induced vasodilation is modulated by the Na,K-pump activity in rabbit coronary small arteries.
    Glavind-Kristensen M; Matchkov V; Hansen VB; Forman A; Nilsson H; Aalkjaer C
    Br J Pharmacol; 2004 Dec; 143(7):872-80. PubMed ID: 15504751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of K+ channels in augmented relaxations to sodium nitroprusside induced by mexiletine in rat aortas.
    Kinoshita H; Ishikawa T; Hatano Y
    Anesthesiology; 2000 Mar; 92(3):813-20. PubMed ID: 10719960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of K(ATP)-channels in rat basilar and middle cerebral arteries: studies of vasomotor responses and mRNA expression.
    Jansen-Olesen I; Mortensen CH; El-Bariaki N; Ploug KB
    Eur J Pharmacol; 2005 Oct; 523(1-3):109-18. PubMed ID: 16226739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acidosis-induced coronary arteriolar dilation is mediated by ATP-sensitive potassium channels in vascular smooth muscle.
    Ishizaka H; Kuo L
    Circ Res; 1996 Jan; 78(1):50-7. PubMed ID: 8603505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and charybdotoxin (CTX) on relaxations of isolated cerebral arteries to nitric oxide.
    Onoue H; Katusic ZS
    Brain Res; 1998 Feb; 785(1):107-13. PubMed ID: 9526059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P2u receptor-mediated release of endothelium-derived relaxing factor/nitric oxide and endothelium-derived hyperpolarizing factor from cerebrovascular endothelium in rats.
    You J; Johnson TD; Marrelli SP; Mombouli JV; Bryan RM
    Stroke; 1999 May; 30(5):1125-33. PubMed ID: 10229754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of lidocaine and mexiletine on relaxations to ATP-sensitive K+ channel openers in rat aortas.
    Kinoshita H; Ishikawa T; Hatano Y
    Anesthesiology; 1999 Apr; 90(4):1165-70. PubMed ID: 10201690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of endothelium-derived nitric oxide in relaxations to levcromakalim in the rat aorta.
    Kinoshita H; Iwahashi S; Kakutani T; Mizumoto K; Iranami H; Hatano Y
    Jpn J Pharmacol; 1999 Dec; 81(4):362-6. PubMed ID: 10669041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of nitric oxide in the non-adrenergic non-cholinergic neurotransmission of horse deep penile arteries: role of charybdotoxin-sensitive K(+)-channels.
    Simonsen U; Prieto D; Sánez de Tejada I; García-Sacristán A
    Br J Pharmacol; 1995 Nov; 116(6):2582-90. PubMed ID: 8590974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guanylate cyclase and not ATP-dependent K(+) channels seems temperature-dependent in smooth muscle relaxation of human umbilical arteries.
    Tiritilli A
    Eur J Pharmacol; 2000 Oct; 406(1):79-84. PubMed ID: 11011037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.