BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 9040900)

  • 1. The role of upper limb segment rotations in the development of spin in the tennis forehand.
    Takahashi K; Elliott B; Noffal G
    Aust J Sci Med Sport; 1996 Dec; 28(4):106-13. PubMed ID: 9040900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of upper limb segment rotations in the development of racket-head speed in the squash forehand.
    Elliott B; Marshall R; Noffal G
    J Sports Sci; 1996 Apr; 14(2):159-65. PubMed ID: 8737323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of upper limb rotations to racket velocity in table tennis backhands against topspin and backspin.
    Iino Y; Mori T; Kojima T
    J Sports Sci; 2008 Feb; 26(3):287-93. PubMed ID: 17934947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlations between Angular Velocities in Selected Joints and Velocity of Table Tennis Racket during Topspin Forehand and Backhand.
    Bańkosz Z; Winiarski S
    J Sports Sci Med; 2018 Jun; 17(2):330-338. PubMed ID: 29769835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biomechanical comparison of the topspin and backspin forehand approach shots in tennis.
    Elliott B; Marsh T
    J Sports Sci; 1989; 7(3):215-27. PubMed ID: 2621759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematics of table tennis topspin forehands: effects of performance level and ball spin.
    Iino Y; Kojima T
    J Sports Sci; 2009 Oct; 27(12):1311-21. PubMed ID: 19746298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Upper Limb Joint Contribution to Racket Head Speed in Elite Tennis Players Using IMU Sensors: Comparison between the Cross-Court and Inside-Out Attacking Forehand Drive.
    Pedro B; João F; Lara JPR; Cabral S; Carvalho J; Veloso AP
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional analysis of the contributions of upper limb joint movements to horizontal racket head velocity at ball impact during tennis serving.
    Tanabe S; Ito A
    Sports Biomech; 2007 Sep; 6(3):418-33. PubMed ID: 17933202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematic differences in upper limb joints between flat and topspin forehand drives in competitive male tennis players.
    Genevois C; Reid M; Creveaux T; Rogowski I
    Sports Biomech; 2020 Apr; 19(2):212-226. PubMed ID: 29768090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of joint rotations to racquet speed in the tennis serve.
    Gordon BJ; Dapena J
    J Sports Sci; 2006 Jan; 24(1):31-49. PubMed ID: 16368612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of the high and low backspin backhand drives in tennis using different grips.
    Elliott B; Christmass M
    J Sports Sci; 1995 Apr; 13(2):141-51. PubMed ID: 7595982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trunk and upper limb muscle activation during flat and topspin forehand drives in young tennis players.
    Rogowski I; Rouffet D; Lambalot F; Brosseau O; Hautier C
    J Appl Biomech; 2011 Feb; 27(1):15-21. PubMed ID: 21451178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lower-limb coordination and shoulder joint mechanics in the tennis serve.
    Reid M; Elliott B; Alderson J
    Med Sci Sports Exerc; 2008 Feb; 40(2):308-15. PubMed ID: 18202570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematic Comparisons of the Shakehand and Penhold Grips in Table Tennis Forehand and Backhand Strokes when Returning Topspin and Backspin Balls.
    Xia R; Dai B; Fu W; Gu N; Wu Y
    J Sports Sci Med; 2020 Dec; 19(4):637-644. PubMed ID: 33239936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in angular momentum during the tennis serve.
    Bahamonde RE
    J Sports Sci; 2000 Aug; 18(8):579-92. PubMed ID: 10972409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-axis rotation: the missing link in proximal-to-distal segmental sequencing.
    Marshall RN; Elliott BC
    J Sports Sci; 2000 Apr; 18(4):247-54. PubMed ID: 10824641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional kinematic method for determining the effectiveness of arm segment rotations in producing racquet-head speed.
    Sprigings E; Marshall R; Elliott B; Jennings L
    J Biomech; 1994 Mar; 27(3):245-54. PubMed ID: 8051185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directionally compensated mechanical work provided by the shoulder leads to similar racket velocities during open and square stance forehand groundstrokes in tennis
    Kawamoto Y; Iino Y; Yoshioka S; Fukashiro S
    Eur J Sport Sci; 2019 Aug; 19(7):902-912. PubMed ID: 30551731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper extremity angular kinematics of the one-handed backhand drive in tennis players with and without tennis elbow.
    Knudson D; Blackwell J
    Int J Sports Med; 1997 Feb; 18(2):79-82. PubMed ID: 9081261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hip joint kinetics in the table tennis topspin forehand: relationship to racket velocity.
    Iino Y
    J Sports Sci; 2018 Apr; 36(7):834-842. PubMed ID: 28643550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.