These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 9041634)
1. The active site histidines of creatine kinase. A critical role of His 61 situated on a flexible loop. Forstner M; Müller A; Stolz M; Wallimann T Protein Sci; 1997 Feb; 6(2):331-9. PubMed ID: 9041634 [TBL] [Abstract][Full Text] [Related]
3. Generation of an active monomer of rabbit muscle creatine kinase by site-directed mutagenesis: the effect of quaternary structure on catalysis and stability. Cox JM; Davis CA; Chan C; Jourden MJ; Jorjorian AD; Brym MJ; Snider MJ; Borders CL; Edmiston PL Biochemistry; 2003 Feb; 42(7):1863-71. PubMed ID: 12590573 [TBL] [Abstract][Full Text] [Related]
4. Creatine kinase: the reactive cysteine is required for synergism but is nonessential for catalysis. Furter R; Furter-Graves EM; Wallimann T Biochemistry; 1993 Jul; 32(27):7022-9. PubMed ID: 8334132 [TBL] [Abstract][Full Text] [Related]
5. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration. Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475 [TBL] [Abstract][Full Text] [Related]
6. Nucleotide binding sites in wild-type creatine kinase and in W227Y mutant probed by photochemical release of nucleotides and infrared difference spectroscopy. Raimbault C; Perraut C; Marcillat O; Buchet R; Vial C Eur J Biochem; 1997 Dec; 250(3):773-82. PubMed ID: 9461301 [TBL] [Abstract][Full Text] [Related]
7. Why is creatine kinase a dimer? Evidence for cooperativity between the two subunits. Hornemann T; Rutishauser D; Wallimann T Biochim Biophys Acta; 2000 Jul; 1480(1-2):365-73. PubMed ID: 10899637 [TBL] [Abstract][Full Text] [Related]
8. Asparagine 285 plays a key role in transition state stabilization in rabbit muscle creatine kinase. Borders CL; MacGregor KM; Edmiston PL; Gbeddy ER; Thomenius MJ; Mulligan GB; Snider MJ Protein Sci; 2003 Mar; 12(3):532-7. PubMed ID: 12592023 [TBL] [Abstract][Full Text] [Related]
9. A conserved negatively charged cluster in the active site of creatine kinase is critical for enzymatic activity. Eder M; Stolz M; Wallimann T; Schlattner U J Biol Chem; 2000 Sep; 275(35):27094-9. PubMed ID: 10829032 [TBL] [Abstract][Full Text] [Related]
10. An unusually low pK(a) for Cys282 in the active site of human muscle creatine kinase. Wang PF; McLeish MJ; Kneen MM; Lee G; Kenyon GL Biochemistry; 2001 Oct; 40(39):11698-705. PubMed ID: 11570870 [TBL] [Abstract][Full Text] [Related]
11. The isoenzyme-diagnostic regions of muscle-type creatine kinase, the M-260 and M-300 box, are not responsible for its binding to the myofibrillar M-band. Stolz M; Kraft T; Wallimann T Eur J Cell Biol; 1998 Sep; 77(1):1-9. PubMed ID: 9808283 [TBL] [Abstract][Full Text] [Related]
12. Creatine kinase: a role for arginine-95 in creatine binding and active site organization. Edmiston PL; Schavolt KL; Kersteen EA; Moore NR; Borders CL Biochim Biophys Acta; 2001 Apr; 1546(2):291-8. PubMed ID: 11295435 [TBL] [Abstract][Full Text] [Related]
13. Creatine kinase isoenzymes specificities: histidine 65 in human CK-BB, a role in protein stability, not in catalysis. Mourad-Terzian T; Steghens JP; Min KL; Collombel C; Bozon D FEBS Lett; 2000 Jun; 475(1):22-6. PubMed ID: 10854850 [TBL] [Abstract][Full Text] [Related]
14. Mutagenesis of two acidic active site residues in human muscle creatine kinase: implications for the catalytic mechanism. Cantwell JS; Novak WR; Wang PF; McLeish MJ; Kenyon GL; Babbitt PC Biochemistry; 2001 Mar; 40(10):3056-61. PubMed ID: 11258919 [TBL] [Abstract][Full Text] [Related]
15. The tryptophan residues of mitochondrial creatine kinase: roles of Trp-223, Trp-206, and Trp-264 in active-site and quaternary structure formation. Gross M; Furter-Graves EM; Wallimann T; Eppenberger HM; Furter R Protein Sci; 1994 Jul; 3(7):1058-68. PubMed ID: 7920251 [TBL] [Abstract][Full Text] [Related]
16. Structural changes of creatine kinase upon substrate binding. Forstner M; Kriechbaum M; Laggner P; Wallimann T Biophys J; 1998 Aug; 75(2):1016-23. PubMed ID: 9675202 [TBL] [Abstract][Full Text] [Related]
17. The role of phosphagen specificity loops in arginine kinase. Azzi A; Clark SA; Ellington WR; Chapman MS Protein Sci; 2004 Mar; 13(3):575-85. PubMed ID: 14978299 [TBL] [Abstract][Full Text] [Related]
18. Isoleucine 69 and valine 325 form a specificity pocket in human muscle creatine kinase. Novak WR; Wang PF; McLeish MJ; Kenyon GL; Babbitt PC Biochemistry; 2004 Nov; 43(43):13766-74. PubMed ID: 15504039 [TBL] [Abstract][Full Text] [Related]
19. Limited proteolysis of creatine kinase. Implications for three-dimensional structure and for conformational substrates. Wyss M; James P; Schlegel J; Wallimann T Biochemistry; 1993 Oct; 32(40):10727-35. PubMed ID: 8399219 [TBL] [Abstract][Full Text] [Related]
20. Determination of the catalytic site of creatine kinase by site-directed mutagenesis. Lin L; Perryman MB; Friedman D; Roberts R; Ma TS Biochim Biophys Acta; 1994 May; 1206(1):97-104. PubMed ID: 8186255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]