These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9041710)

  • 41. Hydrogen sulfide alleviates 2,4-dichlorophenol toxicity and promotes its degradation in Phanerochaete chrysosporium.
    Chen A; Zeng G; Chen G; Zhang C; Yan M; Shang C; Hu X; Lu L; Chen M; Guo Z; Zuo Y
    Chemosphere; 2014 Aug; 109():208-12. PubMed ID: 24530160
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of dissolved oxygen, pH, and anions on the 2,3-dichlorophenol degradation by photocatalytic reaction with anodic TiO(2) nanotube films.
    Liang HC; Li XZ; Yang YH; Sze KH
    Chemosphere; 2008 Oct; 73(5):805-12. PubMed ID: 18640697
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Engineering of a manganese-binding site in lignin peroxidase isozyme H8 from Phanerochaete chrysosporium.
    Mester T; Tien M
    Biochem Biophys Res Commun; 2001 Jun; 284(3):723-8. PubMed ID: 11396962
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Horse heart myoglobin catalyzes the H2O2-dependent oxidative dehalogenation of chlorophenols to DNA-binding radicals and quinones.
    Osborne RL; Coggins MK; Walla M; Dawson JH
    Biochemistry; 2007 Aug; 46(34):9823-9. PubMed ID: 17676875
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Increased PCP removal by Amylomyces rouxii transformants with heterologous Phanerochaete chrysosporium peroxidases supplementing their natural degradative pathway.
    Montiel-González AM; Fernández FJ; Keer N; Tomasini A
    Appl Microbiol Biotechnol; 2009 Aug; 84(2):335-40. PubMed ID: 19340422
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functionality improvement of fungal lignin peroxidase by DNA shuffling for 2,4-dichlorophenol degradability and H2O2 stability.
    Ryu K; Hwang SY; Kim KH; Kang JH; Lee EK
    J Biotechnol; 2008 Jan; 133(1):110-5. PubMed ID: 17961781
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Degradation of 4-nitrophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium.
    Teramoto H; Tanaka H; Wariishi H
    Appl Microbiol Biotechnol; 2004 Dec; 66(3):312-7. PubMed ID: 15448939
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Degradation of 2,4-dichlorophenol by using glow discharge electrolysis.
    Lu Q; Yu J; Gao J
    J Hazard Mater; 2006 Aug; 136(3):526-31. PubMed ID: 16600477
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Autocatalytic formation of a hydroxy group at C beta of trp171 in lignin peroxidase.
    Blodig W; Doyle WA; Smith AT; Winterhalter K; Choinowski T; Piontek K
    Biochemistry; 1998 Jun; 37(25):8832-8. PubMed ID: 9636023
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photoinduced transformation processes of 2,4-dichlorophenol and 2,6-dichlorophenol on nitrate irradiation.
    Vione D; Minero C; Housari F; Chiron S
    Chemosphere; 2007 Nov; 69(10):1548-54. PubMed ID: 17617440
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Irreversible oxidation of ferricytochrome c by lignin peroxidase.
    Sheng D; Gold MH
    Biochemistry; 1998 Feb; 37(7):2029-36. PubMed ID: 9485329
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetic of carbonaceous substrate in an upflow anaerobic sludge sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP).
    Sponza DT; Uluköy A
    J Environ Manage; 2008 Jan; 86(1):121-31. PubMed ID: 17254694
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Experimental and theoretical affinity and catalysis studies between halogenated phenols and peroxidases: Understanding the bioremediation potential.
    Bretz RR; de Castro AA; Lara Ferreira IF; Ramalho TC; Silva MC
    Ecotoxicol Environ Saf; 2020 Oct; 202():110895. PubMed ID: 32615496
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 2-Chloro-1,4-dimethoxybenzene cation radical: formation and role in the lignin peroxidase oxidation of anisyl alcohol.
    Teunissen PJ; Sheng D; Reddy GV; Moënne-Loccoz P; Field JA; Gold MH
    Arch Biochem Biophys; 1998 Dec; 360(2):233-8. PubMed ID: 9851835
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sequential UV-biological degradation of chlorophenols.
    Tamer E; Hamid Z; Aly AM; Ossama el T; Bo M; Benoit G
    Chemosphere; 2006 Apr; 63(2):277-84. PubMed ID: 16153682
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reduction of 2,4-dichlorophenol toxicity to Pseudomonas putida after oxidative incubation with humic substances and a biomimetic catalyst.
    Hahn D; Cozzolino A; Piccolo A; Armenante PM
    Ecotoxicol Environ Saf; 2007 Mar; 66(3):335-42. PubMed ID: 16616957
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sequential photochemical-biological degradation of chlorophenols.
    Essam T; Amin MA; el-Tayeb O; Mattiasson B; Guieysse B
    Chemosphere; 2007 Feb; 66(11):2201-9. PubMed ID: 17097127
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Addition of veratryl alcohol oxidase activity to manganese peroxidase by site-directed mutagenesis.
    Timofeevski SL; Nie G; Reading NS; Aust SD
    Biochem Biophys Res Commun; 1999 Mar; 256(3):500-4. PubMed ID: 10080927
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Comparison of lignocellulolytic enzyme profiles secreted by Panus conchatus and Phanerochaete chrysosporium during solid state cultures].
    Wang C; Yu H; Fu S
    Wei Sheng Wu Xue Bao; 1999 Apr; 39(2):127-31. PubMed ID: 12555416
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biogenic volatile organic compounds as a potential stimulator for organic contaminant degradation by soil microorganisms.
    McLoughlin E; Rhodes AH; Owen SM; Semple KT
    Environ Pollut; 2009 Jan; 157(1):86-94. PubMed ID: 18819735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.