These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9042352)

  • 1. Role of membrane lipid distribution in chlorpromazine-induced shape change of human erythrocytes.
    Chen JY; Huestis WH
    Biochim Biophys Acta; 1997 Jan; 1323(2):299-309. PubMed ID: 9042352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erythrocyte morphology reflects the transbilayer distribution of incorporated phospholipids.
    Daleke DL; Huestis WH
    J Cell Biol; 1989 Apr; 108(4):1375-85. PubMed ID: 2925790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human erythrocyte membrane lipid asymmetry: transbilayer distribution of rapidly diffusing phosphatidylserines.
    Loh RK; Huestis WH
    Biochemistry; 1993 Nov; 32(43):11722-6. PubMed ID: 8218241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micropipette aspiration of human erythrocytes induces echinocytes via membrane phospholipid translocation.
    Artmann GM; Sung KL; Horn T; Whittemore D; Norwich G; Chien S
    Biophys J; 1997 Mar; 72(3):1434-41. PubMed ID: 9138589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen peroxide oxidation induces the transfer of phospholipids from the membrane into the cytosol of human erythrocytes.
    Brunauer LS; Moxness MS; Huestis WH
    Biochemistry; 1994 Apr; 33(15):4527-32. PubMed ID: 8161507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of erythrocyte shape on the rate of Ca2+-induced scrambling of phosphatidylserine.
    Wolfs JL; Comfurius P; Bevers EM; Zwaal RF
    Mol Membr Biol; 2003; 20(1):83-91. PubMed ID: 12745928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of chlorpromazine on the transverse mobility of phospholipids in the human erythrocyte membrane: relation to shape changes.
    Rosso J; Zachowski A; Devaux PF
    Biochim Biophys Acta; 1988 Jul; 942(2):271-9. PubMed ID: 2840122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of amphipath-induced stomatocytosis in human erythrocytes.
    Schrier SL; Zachowski A; Devaux PF
    Blood; 1992 Feb; 79(3):782-6. PubMed ID: 1732016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane protein phosphorylation during stomatocyte-echinocyte transformation of human erythrocytes.
    Reinhart WH; Sung LA; Schuessler GB; Chien S
    Biochim Biophys Acta; 1986 Nov; 862(1):1-7. PubMed ID: 3768359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP-dependent transport of phosphatidylserine analogues in human erythrocytes.
    Smriti ; Nemergut EC; Daleke DL
    Biochemistry; 2007 Feb; 46(8):2249-59. PubMed ID: 17269657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective amphipathic nature of chlorpromazine binding to plasma membrane bilayers.
    Chen JY; Brunauer LS; Chu FC; Helsel CM; Gedde MM; Huestis WH
    Biochim Biophys Acta; 2003 Sep; 1616(1):95-105. PubMed ID: 14507423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape transformations induced by amphiphiles in erythrocytes.
    Isomaa B; Hägerstrand H; Paatero G
    Biochim Biophys Acta; 1987 May; 899(1):93-103. PubMed ID: 3567196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of chlorpromazine on the potential-induced shape change of human erythrocyte.
    Hartmann J; Glaser R
    Biosci Rep; 1991 Aug; 11(4):213-21. PubMed ID: 1760529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cellular morphology on the viscoelastic behavior of high hematocrit RBC suspensions.
    Yardin G; Meiselman HJ
    Biorheology; 1989; 26(2):153-75. PubMed ID: 2605326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship of phospholipid distribution to shape change in Ca(2+)-crenated and recovered human erythrocytes.
    Lin S; Yang E; Huestis WH
    Biochemistry; 1994 Jun; 33(23):7337-44. PubMed ID: 8003498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in erythrocyte morphology induced by imipramine and chlorpromazine.
    Ahyayaucha H; Gallego M; Casis O; Bennouna M
    J Physiol Biochem; 2006 Sep; 62(3):199-205. PubMed ID: 17451161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of erythrocyte ghost membrane mechanical stability by chlorpromazine.
    Enomoto A; Takakuwa Y; Manno S; Tanaka A; Mohandas N
    Biochim Biophys Acta; 2001 Jun; 1512(2):285-90. PubMed ID: 11406105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Echinocyte-stomatocyte transformation and shape control of human red blood cells: morphological aspects.
    Reinhart WH; Chien S
    Am J Hematol; 1987 Jan; 24(1):1-14. PubMed ID: 2432778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of chlorpromazine and imipramine with model membranes.
    Ahyayauch H; Bennouna M
    Therapie; 1999; 54(5):585-8. PubMed ID: 10667094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure of phosphatidylserine in the outer leaflet of human red blood cells. Relationship to cell density, cell age, and clearance by mononuclear cells.
    Connor J; Pak CC; Schroit AJ
    J Biol Chem; 1994 Jan; 269(4):2399-404. PubMed ID: 8300565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.