BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9042574)

  • 1. Transplant of Schwann cells allows normal development of the visual cortex of dark-reared rats.
    Fagiolini M; Pizzorusso T; Porciatti V; Cenni M; Maffei L
    Eur J Neurosci; 1997 Jan; 9(1):102-12. PubMed ID: 9042574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transplant of polymer-encapsulated cells genetically engineered to release nerve growth factor allows a normal functional development of the visual cortex in dark-reared rats.
    Pizzorusso T; Porciatti V; Tseng JL; Aebischer P; Maffei L
    Neuroscience; 1997 Sep; 80(2):307-11. PubMed ID: 9284336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Schwann cells transplanted in the lateral ventricles prevent the functional and anatomical effects of monocular deprivation in the rat.
    Pizzorusso T; Fagiolini M; Fabris M; Ferrari G; Maffei L
    Proc Natl Acad Sci U S A; 1994 Mar; 91(7):2572-6. PubMed ID: 8146156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation.
    Fagiolini M; Pizzorusso T; Berardi N; Domenici L; Maffei L
    Vision Res; 1994 Mar; 34(6):709-20. PubMed ID: 8160387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of dark rearing on phosphorylation of neurotrophin Trk receptors.
    Viegi A; Cotrufo T; Berardi N; Mascia L; Maffei L
    Eur J Neurosci; 2002 Nov; 16(10):1925-30. PubMed ID: 12453056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of visual experience in activating critical period in cat visual cortex.
    Mower GD; Christen WG
    J Neurophysiol; 1985 Feb; 53(2):572-89. PubMed ID: 3981230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Cross-Orientation Suppression and Size Tuning and the Role of Experience.
    Popović M; Stacy AK; Kang M; Nanu R; Oettgen CE; Wise DL; Fiser J; Van Hooser SD
    J Neurosci; 2018 Mar; 38(11):2656-2670. PubMed ID: 29431651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of neurotrophins in the development and plasticity of the visual system: experiments on dark rearing.
    Pizzorusso T; Fagiolini M; Gianfranceschi L; Porciatti V; Maffei L
    Int J Psychophysiol; 2000 Mar; 35(2-3):189-96. PubMed ID: 10677647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended plasticity of visual cortex in dark-reared animals may result from prolonged expression of cpg15-like genes.
    Lee WC; Nedivi E
    J Neurosci; 2002 Mar; 22(5):1807-15. PubMed ID: 11880509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of visual experience on tubulin synthesis during a critical period of visual cortex development in the hooded rat.
    Cronly-Dillon J; Perry GW
    J Physiol; 1979 Aug; 293():469-84. PubMed ID: 501620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experience-dependent maturation of the spatial and temporal characteristics of the cell receptive fields in the kitten visual cortex.
    Gary-Bobo E; Przybyslawski J; Saillour P
    Neurosci Lett; 1995 Apr; 189(3):147-50. PubMed ID: 7624032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early development of visual cortical cells in normal and dark-reared kittens: relationship between orientation selectivity and ocular dominance.
    Frégnac Y; Imbert M
    J Physiol; 1978 May; 278():27-44. PubMed ID: 671298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of neurotrophins on ocular dominance plasticity in developing and adult cat visual cortex.
    Galuske RA; Kim DS; Castrén E; Singer W
    Eur J Neurosci; 2000 Sep; 12(9):3315-30. PubMed ID: 10998115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experience-dependent and independent binocular correspondence of receptive field subregions in mouse visual cortex.
    Sarnaik R; Wang BS; Cang J
    Cereb Cortex; 2014 Jun; 24(6):1658-70. PubMed ID: 23389996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasticity in the kitten's visual cortex: effects of the suppression of visual experience upon the orientational properties of visual cortical cells.
    Buisseret P; Gary-Bobo E; Imbert M
    Brain Res; 1982 Aug; 256(4):417-26. PubMed ID: 7127149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure.
    Humphrey AL; Saul AB
    J Neurophysiol; 1998 Dec; 80(6):2991-3004. PubMed ID: 9862901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dark rearing blocks the developmental down-regulation of brain-derived neurotrophic factor messenger RNA expression in layers IV and V of the rat visual cortex.
    Capsoni S; Tongiorgi E; Cattaneo A; Domenici L
    Neuroscience; 1999 Jan; 88(2):393-403. PubMed ID: 10197762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of dark-rearing on the development of area 18 of the cat's visual cortex.
    Blakemore C; Price DJ
    J Physiol; 1987 Mar; 384():293-309. PubMed ID: 3656148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of neurotrophins on synaptic protein expression in the visual cortex of dark-reared rats.
    Cotrufo T; Viegi A; Berardi N; Bozzi Y; Mascia L; Maffei L
    J Neurosci; 2003 May; 23(9):3566-71. PubMed ID: 12736326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strobe rearing prevents the convergence of inputs with different response timings onto area 17 simple cells.
    Humphrey AL; Saul AB; Feidler JC
    J Neurophysiol; 1998 Dec; 80(6):3005-20. PubMed ID: 9862902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.