These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 9043070)
1. Microtubule disruption reveals that Spemann's organizer is subdivided into two domains by the vegetal alignment zone. Lane MC; Keller R Development; 1997 Feb; 124(4):895-906. PubMed ID: 9043070 [TBL] [Abstract][Full Text] [Related]
2. Patterns of cell motility in the organizer and dorsal mesoderm of Xenopus laevis. Shih J; Keller R Development; 1992 Dec; 116(4):915-30. PubMed ID: 1295744 [TBL] [Abstract][Full Text] [Related]
3. Induction of notochord cell intercalation behavior and differentiation by progressive signals in the gastrula of Xenopus laevis. Domingo C; Keller R Development; 1995 Oct; 121(10):3311-21. PubMed ID: 7588065 [TBL] [Abstract][Full Text] [Related]
4. The patterning and functioning of protrusive activity during convergence and extension of the Xenopus organiser. Keller R; Shih J; Domingo C Dev Suppl; 1992; ():81-91. PubMed ID: 1299372 [TBL] [Abstract][Full Text] [Related]
5. BMP antagonism by Spemann's organizer regulates rostral-caudal fate of mesoderm. Constance Lane M; Davidson L; Sheets MD Dev Biol; 2004 Nov; 275(2):356-74. PubMed ID: 15501224 [TBL] [Abstract][Full Text] [Related]
6. The cellular basis of the convergence and extension of the Xenopus neural plate. Keller R; Shih J; Sater A Dev Dyn; 1992 Mar; 193(3):199-217. PubMed ID: 1600240 [TBL] [Abstract][Full Text] [Related]
7. Mediolateral cell intercalation in the dorsal, axial mesoderm of Xenopus laevis. Keller R; Tibbetts P Dev Biol; 1989 Feb; 131(2):539-49. PubMed ID: 2463948 [TBL] [Abstract][Full Text] [Related]
8. The cleavage stage origin of Spemann's Organizer: analysis of the movements of blastomere clones before and during gastrulation in Xenopus. Bauer DV; Huang S; Moody SA Development; 1994 May; 120(5):1179-89. PubMed ID: 8026328 [TBL] [Abstract][Full Text] [Related]
9. Blastomere derivation and domains of gene expression in the Spemann Organizer of Xenopus laevis. Vodicka MA; Gerhart JC Development; 1995 Nov; 121(11):3505-18. PubMed ID: 8582265 [TBL] [Abstract][Full Text] [Related]
10. Cell rearrangement during gastrulation of Xenopus: direct observation of cultured explants. Wilson P; Keller R Development; 1991 May; 112(1):289-300. PubMed ID: 1769334 [TBL] [Abstract][Full Text] [Related]
11. Xenopus hairy2b specifies anterior prechordal mesoderm identity within Spemann's organizer. Yamaguti M; Cho KW; Hashimoto C Dev Dyn; 2005 Sep; 234(1):102-13. PubMed ID: 16059909 [TBL] [Abstract][Full Text] [Related]
12. Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. Kuroda H; Wessely O; De Robertis EM PLoS Biol; 2004 May; 2(5):E92. PubMed ID: 15138495 [TBL] [Abstract][Full Text] [Related]
13. Boundaries and functional domains in the animal/vegetal axis of Xenopus gastrula mesoderm. Kumano G; Ezal C; Smith WC Dev Biol; 2001 Aug; 236(2):465-77. PubMed ID: 11476585 [TBL] [Abstract][Full Text] [Related]
14. The epithelium of the dorsal marginal zone of Xenopus has organizer properties. Shih J; Keller R Development; 1992 Dec; 116(4):887-99. PubMed ID: 1295742 [TBL] [Abstract][Full Text] [Related]
15. Bone morphogenetic protein-4 (BMP-4) acts during gastrula stages to cause ventralization of Xenopus embryos. Jones CM; Dale L; Hogan BL; Wright CV; Smith JC Development; 1996 May; 122(5):1545-54. PubMed ID: 8625841 [TBL] [Abstract][Full Text] [Related]
16. The FGFR pathway is required for the trunk-inducing functions of Spemann's organizer. Mitchell TS; Sheets MD Dev Biol; 2001 Sep; 237(2):295-305. PubMed ID: 11543615 [TBL] [Abstract][Full Text] [Related]
17. The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. Kim SH; Yamamoto A; Bouwmeester T; Agius E; Robertis EM Development; 1998 Dec; 125(23):4681-90. PubMed ID: 9806917 [TBL] [Abstract][Full Text] [Related]
18. XIPOU 2 is a potential regulator of Spemann's Organizer. Witta SE; Sato SM Development; 1997 Mar; 124(6):1179-89. PubMed ID: 9102305 [TBL] [Abstract][Full Text] [Related]
19. Depletion of three BMP antagonists from Spemann's organizer leads to a catastrophic loss of dorsal structures. Khokha MK; Yeh J; Grammer TC; Harland RM Dev Cell; 2005 Mar; 8(3):401-11. PubMed ID: 15737935 [TBL] [Abstract][Full Text] [Related]
20. The Dorsalization of Spermann's Organizer Takes Place during Gastrulation in Xenopus laevis Embryos: (Spemann's organizer/dorsal mesoderm/neural induction/suramin/inhibition of notochord formation). Grunz H Dev Growth Differ; 1993 Feb; 35(1):25-32. PubMed ID: 37281244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]