BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9043138)

  • 1. Natural kirromycin resistance of elongation factor Tu from the kirrothricin producer Streptomyces cinnamoneus.
    Cappellano C; Monti F; Sosio M; Donadio S; Sarubbi E
    Microbiology (Reading); 1997 Feb; 143 ( Pt 2)():617-624. PubMed ID: 9043138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three tuf-like genes in the kirromycin producer Streptomyces ramocissimus.
    Vijgenboom E; Woudt LP; Heinstra PW; Rietveld K; van Haarlem J; van Wezel GP; Shochat S; Bosch L
    Microbiology (Reading); 1994 Apr; 140 ( Pt 4)():983-98. PubMed ID: 8012612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An elongation factor Tu (EF-Tu) resistant to the EF-Tu inhibitor GE2270 in the producing organism Planobispora rosea.
    Sosio M; Amati G; Cappellano C; Sarubbi E; Monti F; Donadio S
    Mol Microbiol; 1996 Oct; 22(1):43-51. PubMed ID: 8899707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elongation factor Tu3 (EF-Tu3) from the kirromycin producer Streptomyces ramocissimus Is resistant to three classes of EF-Tu-specific inhibitors.
    Olsthoorn-Tieleman LN; Palstra RJ; van Wezel GP; Bibb MJ; Pleij CW
    J Bacteriol; 2007 May; 189(9):3581-90. PubMed ID: 17337575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elongation factor Tu1 of the antibiotic GE2270A producer Planobispora rosea has an unexpected resistance profile against EF-Tu targeted antibiotics.
    Möhrle VG; Tieleman LN; Kraal B
    Biochem Biophys Res Commun; 1997 Jan; 230(2):320-6. PubMed ID: 9016775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The unique tuf2 gene from the kirromycin producer Streptomyces ramocissimus encodes a minor and kirromycin-sensitive elongation factor Tu.
    Olsthoorn-Tieleman LN; Fischer SE; Kraal B
    J Bacteriol; 2002 Aug; 184(15):4211-8. PubMed ID: 12107139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutant ribosomes can generate dominant kirromycin resistance.
    Tubulekas I; Buckingham RH; Hughes D
    J Bacteriol; 1991 Jun; 173(12):3635-43. PubMed ID: 2050625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations to kirromycin resistance occur in the interface of domains I and III of EF-Tu.GTP.
    Abdulkarim F; Liljas L; Hughes D
    FEBS Lett; 1994 Sep; 352(2):118-22. PubMed ID: 7925958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulvomycin-resistant mutants of E.coli elongation factor Tu.
    Zeef LA; Bosch L; Anborgh PH; Cetin R; Parmeggiani A; Hilgenfeld R
    EMBO J; 1994 Nov; 13(21):5113-20. PubMed ID: 7957075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structural and functional basis for the kirromycin resistance of mutant EF-Tu species in Escherichia coli.
    Mesters JR; Zeef LA; Hilgenfeld R; de Graaf JM; Kraal B; Bosch L
    EMBO J; 1994 Oct; 13(20):4877-85. PubMed ID: 7525272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth phase-dependent transcription of the Streptomyces ramocissimus tuf1 gene occurs from two promoters.
    Tieleman LN; van Wezel GP; Bibb MJ; Kraal B
    J Bacteriol; 1997 Jun; 179(11):3619-24. PubMed ID: 9171408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The variant tuf3 gene of Streptomyces coelicolor A3(2) encodes a real elongation factor Tu, as shown in a novel Streptomyces in vitro translation system.
    Olsthoorn-Tieleman LN; Plooster LJ; Kraal B
    Eur J Biochem; 2001 Jul; 268(13):3807-15. PubMed ID: 11432749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of bacterial protein synthesis by elongation-factor-Tu-binding antibiotics MDL 62,879 and efrotomycin.
    Landini P; Bandera M; Goldstein BP; Ripamonti F; Soffientini A; Islam K; Denaro M
    Biochem J; 1992 May; 283 ( Pt 3)(Pt 3):649-52. PubMed ID: 1590753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substitution of Arg230 and Arg233 in Escherichia coli elongation factor Tu strongly enhances its pulvomycin resistance.
    Boon K; Krab I; Parmeggiani A; Bosch L; Kraal B
    Eur J Biochem; 1995 Feb; 227(3):816-22. PubMed ID: 7867642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and expression of elongation factor Tu from Bacillus stearothermophilus.
    Krásný L; Mesters JR; Tieleman LN; Kraal B; Fucík V; Hilgenfeld R; Jonák J
    J Mol Biol; 1998 Oct; 283(2):371-81. PubMed ID: 9769211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete genome sequence of the kirromycin producer Streptomyces collinus Tü 365 consisting of a linear chromosome and two linear plasmids.
    Rückert C; Szczepanowski R; Albersmeier A; Goesmann A; Iftime D; Musiol EM; Blin K; Wohlleben W; Pühler A; Kalinowski J; Weber T
    J Biotechnol; 2013 Dec; 168(4):739-40. PubMed ID: 24140291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequencing of the tuf1 gene and the phosphorylation pattern of EF-Tu1 during development and differentiation in Streptomyces collinus producing kirromycin.
    Mikulík K; Zhulanova E
    Biochem Biophys Res Commun; 1995 Aug; 213(2):454-61. PubMed ID: 7646499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-step purification of E. coli elongation factor Tu.
    Knudsen CR; Clark BF; Degn B; Wiborg O
    Biochem Int; 1992 Oct; 28(2):353-62. PubMed ID: 1456956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that a single EF-Ts suffices for the recycling of multiple and divergent EF-Tu species in Streptomyces coelicolor A3(2) and Streptomyces ramocissimus.
    Hoogvliet G; van Wezel GP; Kraal B
    Microbiology (Reading); 1999 Sep; 145 ( Pt 9)():2293-2301. PubMed ID: 10517582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A single amino acid substitution in elongation factor Tu disrupts interaction between the ternary complex and the ribosome.
    Tubulekas I; Hughes D
    J Bacteriol; 1993 Jan; 175(1):240-50. PubMed ID: 8416899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.