These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 904321)

  • 1. Stable periodic solutions of the reactive-diffusive Volterra system of equations.
    Bhargava SC; Saxena RP
    J Theor Biol; 1977 Aug; 67(3):399-406. PubMed ID: 904321
    [No Abstract]   [Full Text] [Related]  

  • 2. On the non-existence of periodic solutions of the reactive-diffusive Volterra system of equations.
    Gopalsamy K; Aggarwala BD
    J Theor Biol; 1980 Feb; 82(3):537-40. PubMed ID: 7366230
    [No Abstract]   [Full Text] [Related]  

  • 3. Non-existence of wave solutions for the class of reaction--diffusion equations given by the Volterra interacting-population equations with diffusion.
    Murray JD
    J Theor Biol; 1975 Aug; 52(2):459-69. PubMed ID: 1238878
    [No Abstract]   [Full Text] [Related]  

  • 4. The diffusive Lotka-Volterra oscillating system.
    Jorné J
    J Theor Biol; 1977 Mar; 65(1):133-9. PubMed ID: 850417
    [No Abstract]   [Full Text] [Related]  

  • 5. The periodic competing Lotka-Volterra model with impulsive effect.
    Liu B; Chen L
    Math Med Biol; 2004 Jun; 21(2):129-45. PubMed ID: 15228103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The diffusive Lotka-Volterra predator-prey system with delay.
    Al Noufaey KS; Marchant TR; Edwards MP
    Math Biosci; 2015 Dec; 270(Pt A):30-40. PubMed ID: 26471317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persistence in periodic and almost periodic Lotka-Volterra systems.
    Gopalsamy K
    J Math Biol; 1984; 21(2):145-8. PubMed ID: 6533219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convergence to the equilibrium state in the Volterra-Lotka diffusion equations.
    Rothe F
    J Math Biol; 1976 Nov; 3(3-4):319-24. PubMed ID: 1022836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solutions to systems of nonlinear reaction-diffusion equations.
    Rosen G
    Bull Math Biol; 1975 Jun; 37(3):277-89. PubMed ID: 1156701
    [No Abstract]   [Full Text] [Related]  

  • 10. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion.
    Du LJ; Li WT; Wang JB
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1187-1213. PubMed ID: 29161856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lotka-Volterra system with Volterra multiplier.
    Gürlebeck K; Ji X
    Adv Exp Med Biol; 2011; 696():647-55. PubMed ID: 21431606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periodic solutions of some ecological models.
    Brauer F
    J Theor Biol; 1977 Nov; 69(1):143-52. PubMed ID: 592865
    [No Abstract]   [Full Text] [Related]  

  • 13. Using sign patterns to detect the possibility of periodicity in biological systems.
    Culos GJ; Olesky DD; van den Driessche P
    J Math Biol; 2016 Apr; 72(5):1281-300. PubMed ID: 26092517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of ionic migration on oscillations and pattern formation in chemical systems.
    Jorné J
    J Theor Biol; 1974 Feb; 43(2):375-80. PubMed ID: 4818353
    [No Abstract]   [Full Text] [Related]  

  • 15. Stochastic resonance with a mesoscopic reaction-diffusion system.
    Mahara H; Yamaguchi T; Parmananda P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062913. PubMed ID: 25019857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bimodal response in periodically driven diffusive systems.
    Basu U; Chaudhuri D; Mohanty PK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031115. PubMed ID: 21517462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable diffusive lateral inhibition in chemical cells.
    Li N; Tompkins N; Gonzalez-Ochoa H; Fraden S
    Eur Phys J E Soft Matter; 2015 Mar; 38(3):18. PubMed ID: 25795263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biological least-action principle for the ecological model of Volterra-Lotka.
    Samuelson PA
    Proc Natl Acad Sci U S A; 1974 Aug; 71(8):3041-4. PubMed ID: 4528377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological populations obeying difference equations: stable points, stable cycles, and chaos.
    May RM
    J Theor Biol; 1975 Jun; 51(2):511-24. PubMed ID: 1142800
    [No Abstract]   [Full Text] [Related]  

  • 20. Deriving reaction-diffusion models in ecology from interacting particle systems.
    Cantrell RS; Cosner C
    J Math Biol; 2004 Feb; 48(2):187-217. PubMed ID: 14745510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.