These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9043636)

  • 1. Protein phosphatases are pest containing proteins.
    Gomes AV; Barnes JA
    Biochem Mol Biol Int; 1997 Jan; 41(1):65-73. PubMed ID: 9043636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteolytic signals in the primary structure of annexins.
    Barnes JA; Gomes AV
    Mol Cell Biochem; 2002 Feb; 231(1-2):1-7. PubMed ID: 11952151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PEST sequences and regulation by proteolysis.
    Rechsteiner M; Rogers SW
    Trends Biochem Sci; 1996 Jul; 21(7):267-71. PubMed ID: 8755249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pest sequences in EF-hand calcium-binding proteins.
    Gomes AV; Barnes JA
    Biochem Mol Biol Int; 1995 Nov; 37(5):853-60. PubMed ID: 8624490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PEST sequences in proteins involved in cyclic nucleotide signalling pathways.
    Sekhar KR; Freeman ML
    J Recept Signal Transduct Res; 1998; 18(2-3):113-32. PubMed ID: 9651881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial-like PPP protein phosphatases: novel sequence alterations in pathogenic eukaryotes and peculiar features of bacterial sequence similarity.
    Kerk D; Uhrig RG; Moorhead GB
    Plant Signal Behav; 2013; 8(12):e27365. PubMed ID: 24675170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain.
    Hofmann K; Bucher P; Kajava AV
    J Mol Biol; 1998 Sep; 282(1):195-208. PubMed ID: 9733650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanisms of the protein serine/threonine phosphatases.
    Barford D
    Trends Biochem Sci; 1996 Nov; 21(11):407-12. PubMed ID: 8987393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MDP-1 is a new and distinct member of the haloacid dehalogenase family of aspartate-dependent phosphohydrolases.
    Selengut JD
    Biochemistry; 2001 Oct; 40(42):12704-11. PubMed ID: 11601995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal transduction pathways in response to protein misfolding in the extracytoplasmic compartments of E. coli: role of two new phosphoprotein phosphatases PrpA and PrpB.
    Missiakas D; Raina S
    EMBO J; 1997 Apr; 16(7):1670-85. PubMed ID: 9130712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular modeling analysis of the binding interactions between the okadaic acid class of natural product inhibitors and the Ser-Thr phosphatases, PP1 and PP2A.
    Gauss CM; Sheppeck JE; Nairn AC; Chamberlin R
    Bioorg Med Chem; 1997 Sep; 5(9):1751-73. PubMed ID: 9354231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of a protein phosphatase with an Arabidopsis serine-threonine receptor kinase.
    Stone JM; Collinge MA; Smith RD; Horn MA; Walker JC
    Science; 1994 Nov; 266(5186):793-5. PubMed ID: 7973632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myristoyl-coA:protein N-myristoyltransferase from bovine cardiac muscle: molecular cloning, kinetic analysis, and in vitro proteolytic cleavage by m-calpain.
    Raju RV; Kakkar R; Datla RS; Radhi J; Sharma RK
    Exp Cell Res; 1998 May; 241(1):23-35. PubMed ID: 9633510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-translational generation of constitutively active cores from larger phosphatases in the malaria parasite, Plasmodium falciparum: implications for proteomics.
    Kumar R; Musiyenko A; Oldenburg A; Adams B; Barik S
    BMC Mol Biol; 2004 Jul; 5():6. PubMed ID: 15230980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of penetrating peptides interacting with PP1/PP2A proteins as a general approach for a drug phosphatase technology.
    Guergnon J; Dessauge F; Dominguez V; Viallet J; Bonnefoy S; Yuste VJ; Mercereau-Puijalon O; Cayla X; Rebollo A; Susin SA; Bost PE; Garcia A
    Mol Pharmacol; 2006 Apr; 69(4):1115-24. PubMed ID: 16387795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of enzyme levels by proteolysis: the role of pest regions.
    Rechsteiner M
    Adv Enzyme Regul; 1988; 27():135-51. PubMed ID: 2907964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conservation analysis and structure prediction of the protein serine/threonine phosphatases. Sequence similarity with diadenosine tetraphosphatase from Escherichia coli suggests homology to the protein phosphatases.
    Barton GJ; Cohen PT; Barford D
    Eur J Biochem; 1994 Feb; 220(1):225-37. PubMed ID: 8119291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein phosphatases: structures and implications.
    Jia Z
    Biochem Cell Biol; 1997; 75(1):17-26. PubMed ID: 9192069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An alternate conformation and a third metal in PstP/Ppp, the M. tuberculosis PP2C-Family Ser/Thr protein phosphatase.
    Pullen KE; Ng HL; Sung PY; Good MC; Smith SM; Alber T
    Structure; 2004 Nov; 12(11):1947-54. PubMed ID: 15530359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmodium falciparum serine/threonine phoshoprotein phosphatases (PPP): from housekeeper to the 'holy grail'.
    Bajsa J; Duke SO; Tekwani BL
    Curr Drug Targets; 2008 Nov; 9(11):997-1012. PubMed ID: 18991611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.