These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 9043674)

  • 41. Quantal and non-quantal ACh release at developing Xenopus neuromuscular junctions in culture.
    Young SH; Grinnell AD
    J Physiol; 1994 Mar; 475(2):207-16. PubMed ID: 8021828
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Finite element simulations of acetylcholine diffusion in neuromuscular junctions.
    Tai K; Bond SD; MacMillan HR; Baker NA; Holst MJ; McCammon JA
    Biophys J; 2003 Apr; 84(4):2234-41. PubMed ID: 12668432
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Discrete acetylcholine release from neuroblastoma or hybrid cells overexpressing choline acetyltransferase into the neuromuscular synaptic cleft.
    Zhong ZG; Kimura Y; Noda M; Misawa H; Higashida H
    Neurosci Res; 1995 Mar; 22(1):81-8. PubMed ID: 7792084
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synaptic depression in frog neuromuscular junction.
    Glavinović MI
    J Neurophysiol; 1987 Jul; 58(1):230-46. PubMed ID: 2441003
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of N-acetylaspartylglutamate (NAAG) on non-quantal and spontaneous quantal release of acetylcholine at the neuromuscular synapse of rat.
    Malomouzh AI; Nikolsky EE; Lieberman EM; Sherman JA; Lubischer JL; Grossfeld RM; Urazaev AKh
    J Neurochem; 2005 Jul; 94(1):257-67. PubMed ID: 15953368
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Linear feedback control of acetylcholine level in the presynaptic terminal.
    Sakamoto N
    Biosystems; 1990; 24(3):183-92. PubMed ID: 1963556
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Potentiation by endogenously released ATP of spontaneous transmitter secretion at developing neuromuscular synapses in Xenopus cell cultures.
    Fu WM; Huang FL
    Br J Pharmacol; 1994 Mar; 111(3):880-6. PubMed ID: 8019765
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Acetylcholine storage, release and leakage at the neuromuscular junction of mature adult and aged rats.
    Smith DO
    J Physiol; 1984 Feb; 347():161-76. PubMed ID: 6323695
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kinetics of Chemical Processes in the Human Brain. The Cholinergic Synapse-Mechanisms of Functioning and Control Methods.
    Varfolomeev SD; Bykov VI; Tsybenova SB
    Dokl Biochem Biophys; 2020 May; 492(1):147-151. PubMed ID: 32632593
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The permeability of the basal lamina at the neuromuscular junction. An ultrastructural study of rat skeletal muscle using particulate tracers.
    Oldfors A; Fardeau M
    Neuropathol Appl Neurobiol; 1983; 9(6):419-32. PubMed ID: 6656996
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ATP but not adenosine inhibits nonquantal acetylcholine release at the mouse neuromuscular junction.
    Galkin AV; Giniatullin RA; Mukhtarov MR; Svandová I; Grishin SN; Vyskocil F
    Eur J Neurosci; 2001 Jun; 13(11):2047-53. PubMed ID: 11422445
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Distribution of acetylcholine receptors at frog neuromuscular junctions with a discussion of some physiological implications.
    Matthews-Bellinger J; Salpeter MM
    J Physiol; 1978 Jun; 279():197-213. PubMed ID: 307600
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Presynaptic muscarinic acetylcholine autoreceptors (M1, M2 and M4 subtypes), adenosine receptors (A1 and A2A) and tropomyosin-related kinase B receptor (TrkB) modulate the developmental synapse elimination process at the neuromuscular junction.
    Nadal L; Garcia N; Hurtado E; Simó A; Tomàs M; Lanuza MA; Santafé M; Tomàs J
    Mol Brain; 2016 Jun; 9(1):67. PubMed ID: 27339059
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Botulinum toxin blocks quantal but not non-quantal release of ACh at the neuromuscular junction.
    Stanley EF; Drachman DB
    Brain Res; 1983 Feb; 261(1):172-5. PubMed ID: 6301625
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A study of desensitization of acetylcholine receptors using nerve-released transmitter in the frog.
    Magleby KL; Pallotta BS
    J Physiol; 1981 Jul; 316():225-50. PubMed ID: 6275065
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Activation of protein kinase C increases acetylcholine release from frog motor nerves by a direct action on L-type Ca(2+) channels and apparently not by depolarisation of the terminal.
    Arenson MS; Evans SC
    Neuroscience; 2001; 104(4):1157-64. PubMed ID: 11457598
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Constraints on the interpretation of nonquantal acetylcholine release from frog neuromuscular junctions.
    Meriney SD; Young SH; Grinnell AD
    Proc Natl Acad Sci U S A; 1989 Mar; 86(6):2098-102. PubMed ID: 2784566
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The glial cell line-derived neurotrophic factor (GDNF) does not acutely change acetylcholine release in developing and adult neuromuscular junction.
    Garcia N; Santafé MM; Tomàs M; Lanuza MA; Besalduch N; Priego M; Tomàs J
    Neurosci Lett; 2010 Aug; 480(2):127-31. PubMed ID: 20542089
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Release and synthesis of acetylcholine at ectopic neuromuscular junctions in the rat.
    van Kempen GT; Molenaar PC; Slater CR
    J Physiol; 1994 Jul; 478 ( Pt 2)(Pt 2):229-38. PubMed ID: 7965844
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Factors affecting the time course of decay of end-plate currents: a possible cooperative action of acetylcholine on receptors at the frog neuromuscular junction.
    Magleby KL; Terrar DA
    J Physiol; 1975 Jan; 244(2):467-95. PubMed ID: 167152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.