These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 9043713)
21. Descending noradrenergic influences on pain. Jones SL Prog Brain Res; 1991; 88():381-94. PubMed ID: 1813927 [TBL] [Abstract][Full Text] [Related]
22. Spinal pathways mediating tonic, coeruleospinal, and raphe-spinal descending inhibition in the rat. Jones SL; Gebhart GF J Neurophysiol; 1987 Jul; 58(1):138-59. PubMed ID: 3612222 [TBL] [Abstract][Full Text] [Related]
23. Effects of intrathecal monoamine antagonists and naloxone on the descending inhibition of the spinal transmission of noxious input in rats: study with a new experimental model. Li YJ; Xie YF; Qiao JT Brain Res; 1991 Dec; 568(1-2):131-7. PubMed ID: 1814562 [TBL] [Abstract][Full Text] [Related]
24. Electrical stimulation of cervical vagal afferents. I. Central relays for modulation of spinal nociceptive transmission. Ren K; Randich A; Gebhart GF J Neurophysiol; 1990 Oct; 64(4):1098-114. PubMed ID: 2175352 [TBL] [Abstract][Full Text] [Related]
25. Blood pressure reflexes following activation of capsaicin-sensitive afferent neurones in the biliopancreatic duct of rats. Griesbacher T Br J Pharmacol; 1994 Feb; 111(2):547-54. PubMed ID: 7911720 [TBL] [Abstract][Full Text] [Related]
26. Depression of nociceptive sensory activity in the rat spinal cord due to the intrathecal administration of drugs: effect of diazepam. Jurna I Neurosurgery; 1984 Dec; 15(6):917-20. PubMed ID: 6096760 [TBL] [Abstract][Full Text] [Related]
27. Spinal serotonin receptors mediate descending facilitation of a nociceptive reflex from the nuclei reticularis gigantocellularis and gigantocellularis pars alpha in the rat. Zhuo M; Gebhart GF Brain Res; 1991 May; 550(1):35-48. PubMed ID: 1888999 [TBL] [Abstract][Full Text] [Related]
28. Pathways mediating descending control of spinal nociceptive transmission from the nuclei locus coeruleus (LC) and raphe magnus (NRM) in the cat. Mokha SS; McMillan JA; Iggo A Exp Brain Res; 1986; 61(3):597-606. PubMed ID: 3007190 [TBL] [Abstract][Full Text] [Related]
29. Limited responsiveness of LHRH neurons to norepinephrine may account for failure of locus coeruleus or medullary A1 electrical stimulation to increase plasma LH in estrogen-treated ovariectomized rats. Hartman RD; Petersen S; Barraclough CA Brain Res; 1989 Jan; 476(1):35-44. PubMed ID: 2644003 [TBL] [Abstract][Full Text] [Related]
30. Involvement of supraspinal and spinal segmental alpha-2-adrenergic mechanisms in the medetomidine-induced antinociception. Pertovaara A; Kauppila T; Jyväsjärvi E; Kalso E Neuroscience; 1991; 44(3):705-14. PubMed ID: 1684411 [TBL] [Abstract][Full Text] [Related]
31. Effects of intrathecal naloxone and atropine on the nociceptive suppression induced by norepinephrine and serotonin at the spinal level in rats. Li YJ; Zhang ZH; Chen JY; Qiao JT Brain Res; 1994 Dec; 666(1):113-6. PubMed ID: 7889359 [TBL] [Abstract][Full Text] [Related]
32. Descending influence from the nucleus locus coeruleus/subcoeruleus on visceral nociceptive transmission in the rat spinal cord. Tsuruoka M; Wang D; Tamaki J; Inoue T Neuroscience; 2010 Feb; 165(4):1019-24. PubMed ID: 19958815 [TBL] [Abstract][Full Text] [Related]
33. Biphasic modulation of spinal nociceptive transmission from the medullary raphe nuclei in the rat. Zhuo M; Gebhart GF J Neurophysiol; 1997 Aug; 78(2):746-58. PubMed ID: 9307109 [TBL] [Abstract][Full Text] [Related]
34. Bee venom injection significantly reduces nociceptive behavior in the mouse formalin test via capsaicin-insensitive afferents. Roh DH; Kim HW; Yoon SY; Kang SY; Kwon YB; Cho KH; Han HJ; Ryu YH; Choi SM; Lee HJ; Beitz AJ; Lee JH J Pain; 2006 Jul; 7(7):500-12. PubMed ID: 16814689 [TBL] [Abstract][Full Text] [Related]
35. Descending modulation of opioid-containing nociceptive neurons in rats with peripheral inflammation and hyperalgesia. MacArthur L; Ren K; Pfaffenroth E; Franklin E; Ruda MA Neuroscience; 1999 Jan; 88(2):499-506. PubMed ID: 10197770 [TBL] [Abstract][Full Text] [Related]
36. Evidence for functional contact between cografted locus coeruleus and spinal cord in oculo: electrophysiological studies. Henschen AF; Goldstein M; Palmer MR Brain Res; 1988 Nov; 474(1):66-74. PubMed ID: 3214715 [TBL] [Abstract][Full Text] [Related]
37. Cotransmitter-mediated locus coeruleus action on motoneurons. Fung SI; Chan JY; Manzoni D; White SR; Lai YY; Strahlendorf HK; Zhuo H; Liu RH; Reddy VK; Barnes CD Brain Res Bull; 1994; 35(5-6):423-32. PubMed ID: 7859099 [TBL] [Abstract][Full Text] [Related]
38. Locus coeruleus neurons and sympathetic nerves: activation by cutaneous sensory afferents. Elam M; Svensson TH; Thorén P Brain Res; 1986 Feb; 366(1-2):254-61. PubMed ID: 3697682 [TBL] [Abstract][Full Text] [Related]
39. Characterization of coeruleospinal inhibition of the nociceptive tail-flick reflex in the rat: mediation by spinal alpha 2-adrenoceptors. Jones SL; Gebhart GF Brain Res; 1986 Feb; 364(2):315-30. PubMed ID: 2868781 [TBL] [Abstract][Full Text] [Related]
40. Noradrenergic mechanism involved in the nociceptive modulation of nociceptive-related neurons in the caudate putamen. Zhang GW; Yang CX; Zhang D; Gao HE; Zhang Y; Jiao RS; Zhang H; Liang Y; Xu MY Neurosci Lett; 2010 Aug; 480(1):59-63. PubMed ID: 20553996 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]