BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 9044313)

  • 21. Administration of AGEs in vivo induces extracellular matrix gene expression.
    Striker LJ; Striker GE
    Nephrol Dial Transplant; 1996; 11 Suppl 5():62-5. PubMed ID: 9044310
    [TBL] [Abstract][Full Text] [Related]  

  • 22. N-phenacylthiazolium bromide decreases renal and increases urinary advanced glycation end products excretion without ameliorating diabetic nephropathy in C57BL/6 mice.
    Schwedler SB; Verbeke P; Bakala H; Weiss MF; Vilar J; Depreux P; Fourmaintraux E; Striker LJ; Striker GE
    Diabetes Obes Metab; 2001 Aug; 3(4):230-9. PubMed ID: 11520302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advanced glycosylation end products in diabetic renal and vascular disease.
    Bucala R; Vlassara H
    Am J Kidney Dis; 1995 Dec; 26(6):875-88. PubMed ID: 7503061
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accumulation of Nsigma-(carboxy-methyl)lysine and changes in glomerular extracellular matrix components in Otsuka Long-Evans Tokushima fatty rat: a model of spontaneous NIDDM.
    Kushiro M; Shikata K; Sugimoto H; Ikeda K; Horiuchi S; Makino H
    Nephron; 1998 Aug; 79(4):458-68. PubMed ID: 9689163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of Amadori-modified nonenzymatically glycated serum proteins in the pathogenesis of diabetic nephropathy.
    Cohen MP; Ziyadeh FN
    J Am Soc Nephrol; 1996 Feb; 7(2):183-90. PubMed ID: 8785386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Localization of advanced glycation endproducts in the kidney of experimental diabetic rats.
    Shikata K; Makino H; Sugimoto H; Kushiro M; Ota K; Akiyama K; Araki N; Horiuchi S; Ota Z
    J Diabetes Complications; 1995; 9(4):269-71. PubMed ID: 8573744
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-β1 by activating the Nrf2/ARE pathway in glomerular mesangial cells.
    Huang K; Huang J; Xie X; Wang S; Chen C; Shen X; Liu P; Huang H
    Free Radic Biol Med; 2013 Dec; 65():528-540. PubMed ID: 23891678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immunohistochemical detection of advanced glycosylation end products within the vascular lesions and glomeruli in diabetic nephropathy.
    Nishino T; Horii Y; Shiiki H; Yamamoto H; Makita Z; Bucala R; Dohi K
    Hum Pathol; 1995 Mar; 26(3):308-13. PubMed ID: 7890283
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Molecular bases of diabetic nephropathy].
    Lagranha CJ; Fiorino P; Casarini DE; Schaan BD; Irigoyen MC
    Arq Bras Endocrinol Metabol; 2007 Aug; 51(6):901-12. PubMed ID: 17934656
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diffuse glomerular nodular lesions in diabetic pigs carrying a dominant-negative mutant hepatocyte nuclear factor 1-alpha, an inheritant diabetic gene in humans.
    Hara S; Umeyama K; Yokoo T; Nagashima H; Nagata M
    PLoS One; 2014; 9(3):e92219. PubMed ID: 24647409
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional architecture of glomerular extracellular matrices in diabetic glomerulosclerosis.
    Makino H; Nishimura S; Haramoto T; Yamasaki Y; Ikeda S; Ota Z
    J Diabet Complications; 1991; 5(2-3):124-5. PubMed ID: 1770017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regular moderate exercise reduces advanced glycation and ameliorates early diabetic nephropathy in obese Zucker rats.
    Boor P; Celec P; Behuliak M; Grancic P; Kebis A; Kukan M; Pronayová N; Liptaj T; Ostendorf T; Sebeková K
    Metabolism; 2009 Nov; 58(11):1669-77. PubMed ID: 19608208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitofusin 2 attenuates the histone acetylation at collagen IV promoter in diabetic nephropathy.
    Mi X; Tang W; Chen X; Liu F; Tang X
    J Mol Endocrinol; 2016 Nov; 57(4):233-249. PubMed ID: 27997345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advanced glycation end products decrease mesangial cell MMP-7: a role in matrix accumulation in diabetic nephropathy?
    McLennan SV; Kelly DJ; Schache M; Waltham M; Dy V; Langham RG; Yue DK; Gilbert RE
    Kidney Int; 2007 Aug; 72(4):481-8. PubMed ID: 17554258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diabetic kidney disease: a role for advanced glycation end-product receptor 1 (AGE-R1)?
    Zhuang A; Forbes JM
    Glycoconj J; 2016 Aug; 33(4):645-52. PubMed ID: 27270766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immunohistochemical detection of imidazolone, a novel advanced glycation end product, in kidneys and aortas of diabetic patients.
    Niwa T; Katsuzaki T; Miyazaki S; Miyazaki T; Ishizaki Y; Hayase F; Tatemichi N; Takei Y
    J Clin Invest; 1997 Mar; 99(6):1272-80. PubMed ID: 9077536
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advanced glycation end products (AGEs) increase renal lipid accumulation: a pathogenic factor of diabetic nephropathy (DN).
    Yuan Y; Sun H; Sun Z
    Lipids Health Dis; 2017 Jun; 16(1):126. PubMed ID: 28659153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Osteomeles schwerinae extracts inhibits the binding to receptors of advanced glycation end products and TGF-β1 expression in mesangial cells under diabetic conditions.
    Kim YS; Jung DH; Lee IS; Pyun BJ; Kim JS
    Phytomedicine; 2016 Apr; 23(4):388-97. PubMed ID: 27002409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Type IV collagen is transcriptionally regulated by Smad1 under advanced glycation end product (AGE) stimulation.
    Abe H; Matsubara T; Iehara N; Nagai K; Takahashi T; Arai H; Kita T; Doi T
    J Biol Chem; 2004 Apr; 279(14):14201-6. PubMed ID: 14732718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Early progression of diabetic nephropathy correlates with methylglyoxal-derived advanced glycation end products.
    Beisswenger PJ; Howell SK; Russell GB; Miller ME; Rich SS; Mauer M
    Diabetes Care; 2013 Oct; 36(10):3234-9. PubMed ID: 23780945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.