These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 9044313)

  • 41. AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions.
    Sanajou D; Ghorbani Haghjo A; Argani H; Aslani S
    Eur J Pharmacol; 2018 Aug; 833():158-164. PubMed ID: 29883668
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrastructural characteristics of diabetic nephropathy.
    Nishi S; Ueno M; Hisaki S; Iino N; Iguchi S; Oyama Y; Imai N; Arakawa M; Gejyo F
    Med Electron Microsc; 2000; 33(2):65-73. PubMed ID: 11810461
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RAGE-Aptamer Blocks the Development and Progression of Experimental Diabetic Nephropathy.
    Matsui T; Higashimoto Y; Nishino Y; Nakamura N; Fukami K; Yamagishi SI
    Diabetes; 2017 Jun; 66(6):1683-1695. PubMed ID: 28385802
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Heparan sulfate proteoglycans are lost in patients with diabetic nephropathy.
    Makino H; Ikeda S; Haramoto T; Ota Z
    Nephron; 1992; 61(4):415-21. PubMed ID: 1501738
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Berberine exerts renoprotective effects by regulating the AGEs-RAGE signaling pathway in mesangial cells during diabetic nephropathy.
    Qiu YY; Tang LQ; Wei W
    Mol Cell Endocrinol; 2017 Mar; 443():89-105. PubMed ID: 28087385
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Advanced glycation end-products: implications for diabetic and non-diabetic nephropathies.
    Daroux M; Prévost G; Maillard-Lefebvre H; Gaxatte C; D'Agati VD; Schmidt AM; Boulanger E
    Diabetes Metab; 2010 Feb; 36(1):1-10. PubMed ID: 19932633
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NG2 proteoglycan increases mesangial cell proliferation and extracellular matrix production.
    Xiong J; Wang Y; Zhu Z; Liu J; Wang Y; Zhang C; Hammes HP; Lang F; Feng Y
    Biochem Biophys Res Commun; 2007 Oct; 361(4):960-7. PubMed ID: 17686464
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Immunohistochemical evidence for an increased oxidative stress and carbonyl modification of proteins in diabetic glomerular lesions.
    Suzuki D; Miyata T; Saotome N; Horie K; Inagi R; Yasuda Y; Uchida K; Izuhara Y; Yagame M; Sakai H; Kurokawa K
    J Am Soc Nephrol; 1999 Apr; 10(4):822-32. PubMed ID: 10203367
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Advanced glycation end products, oxidative stress and diabetic nephropathy.
    Yamagishi S; Matsui T
    Oxid Med Cell Longev; 2010; 3(2):101-8. PubMed ID: 20716934
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Advanced glycation end products up-regulate gene expression found in diabetic glomerular disease.
    Yang CW; Vlassara H; Peten EP; He CJ; Striker GE; Striker LJ
    Proc Natl Acad Sci U S A; 1994 Sep; 91(20):9436-40. PubMed ID: 7937785
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy.
    Kumar Pasupulati A; Chitra PS; Reddy GB
    Biomol Concepts; 2016 Dec; 7(5-6):293-309. PubMed ID: 27816946
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Myofibroblasts and the progression of diabetic nephropathy.
    Essawy M; Soylemezoglu O; Muchaneta-Kubara EC; Shortland J; Brown CB; el Nahas AM
    Nephrol Dial Transplant; 1997 Jan; 12(1):43-50. PubMed ID: 9027772
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibition of advanced glycation end product formation by Pu-erh tea ameliorates progression of experimental diabetic nephropathy.
    Yan SJ; Wang L; Li Z; Zhu DN; Guo SC; Xin WF; Yang YF; Cong X; Ma T; Shen PP; Sheng J; Zhang WS
    J Agric Food Chem; 2012 Apr; 60(16):4102-10. PubMed ID: 22482420
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differential distribution of type IV collagen chains in patients with diabetic nephropathy in non-insulin-dependent diabetes mellitus.
    Yagame M; Kim Y; Zhu D; Suzuki D; Eguchi K; Nomoto Y; Sakai H; Groppoli T; Steffes MW; Mauer SM
    Nephron; 1995; 70(1):42-8. PubMed ID: 7617116
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of AGEs in diabetic nephropathy.
    Fukami K; Yamagishi S; Ueda S; Okuda S
    Curr Pharm Des; 2008; 14(10):946-52. PubMed ID: 18473844
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Trans-resveratrol mitigates type 1 diabetes-induced oxidative DNA damage and accumulation of advanced glycation end products in glomeruli and tubules of rat kidneys.
    Al-Hussaini H; Kilarkaje N
    Toxicol Appl Pharmacol; 2018 Jan; 339():97-109. PubMed ID: 29229234
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Abnormality of type IV collagen metabolism in the development of diabetic nephropathy].
    Haneda M; Kikkawa R
    Nihon Rinsho; 1992 Dec; 50(12):3016-20. PubMed ID: 1491453
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of advanced glycation end products in diabetic nephropathy.
    Forbes JM; Cooper ME; Oldfield MD; Thomas MC
    J Am Soc Nephrol; 2003 Aug; 14(8 Suppl 3):S254-8. PubMed ID: 12874442
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mesangial deposition of type I collagen in human glomerulosclerosis.
    Glick AD; Jacobson HR; Haralson MA
    Hum Pathol; 1992 Dec; 23(12):1373-9. PubMed ID: 1468774
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Expression of receptors for advanced glycation end-products in occlusive vascular and renal disease.
    Bierhaus A; Ritz E; Nawroth PP
    Nephrol Dial Transplant; 1996; 11 Suppl 5():87-90. PubMed ID: 9044315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.