These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9044811)

  • 1. [The effect of hypoxic hypoxia on energy metabolism in the liver mitochondria and the acetylcholine content of different tissues].
    Doliba MM; Hordiĭ SK; Korobov VM
    Fiziol Zh (1994); 1996; 42(5-6):45-50. PubMed ID: 9044811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Regulation of oxidative phosphorylation by liver mitochondria receptors after adaptation by rats to periodic normal pressure and acute hypoxia].
    Kurhaliuk NM; Serebrovs'ka TV; Koliesnikova IeE
    Ukr Biokhim Zh (1999); 2002; 74(6):114-9. PubMed ID: 12924024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The effect of hypoxia on oxidative phosphorylation and lipid peroxidation in rat liver mitochondria upon lung inflammation].
    Semenov VL; Iarosh AM
    Ukr Biokhim Zh (1978); 1991; 63(2):95-101. PubMed ID: 1882468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Carnosine in adaptation to hypobaric hypoxia].
    Korobov VN; Doliba NM; Telegus IaV
    Biokhimiia; 1993 May; 58(5):740-4. PubMed ID: 8338886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Exogenous L-arginine modulates mitochondrial and microsomal oxidation in acute and intermittent normobaric hypoxia].
    Kurhaliuk NM; Serebrovs'ka TV; Koliesnikova IeE; Aleksiuk LI
    Fiziol Zh (1994); 2002; 48(5):67-73. PubMed ID: 12449619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Role of calcium ions in the mechanism of action of acetylcholine on energy metabolism in rat liver mitochondria].
    Vatamaniuk MZ; Artym VV; Kuka OB; Doliba MM; Shostakovs'ka IV
    Ukr Biokhim Zh (1978); 1996; 68(5):9-14. PubMed ID: 9229860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [EFFect of alpha-ketoglutarate and acetylcholine synergism on energy metabolism in mitochondria].
    Doliba MM; Kurhaliuk NM; Muzyka FV; Shostakovska IV; Kondrashova MM
    Fiziol Zh (1978); 1993; 39(5-6):65-70. PubMed ID: 8045321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mechanism of reciprocal effects of acetylcholine on oxidation of alpha-ketoglutarate and succinate in heart and liver mitochondria. Factors influencing detection of the acetylcholine effect].
    Doliba MM; Vatamaniuk MZ; Mrvan D; Shostakovs'ka IV; Kondrashova MM
    Ukr Biokhim Zh (1978); 1994; 66(1):41-9. PubMed ID: 7974837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Acetylcholine activation of alpha-ketoglutarate oxidation in liver mitochondria].
    Shostakovskaia IV; Doliba NM; Gordiĭ SK; Babskiĭ AM; Kondrashova MN
    Ukr Biokhim Zh (1978); 1986; 58(5):54-61. PubMed ID: 3775883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Disruption of energy metabolism in the liver during lung inflammation in rats].
    Semenov VL; Iarosh AM
    Vopr Med Khim; 1991; 37(3):28-30. PubMed ID: 1949678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarographic observation of substrate-level phosphorylation and its stimulation by acetylcholine.
    Kondrashova MN; Doliba NM
    FEBS Lett; 1989 Jan; 243(2):153-5. PubMed ID: 2917643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Adaptation of energy metabolism of liver and muscles in the rabbit to hypobaric hypoxia].
    Kosenko EA; Kaminskiĭ IuG; Kondrashova MN
    Biokhimiia; 1983 Jan; 48(1):17-22. PubMed ID: 6830913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Continuous adaptation of rats to hypobaric hypoxia prevents stressor hyperglycemia and optimizes mitochondrial respiration under acute hypoxia].
    Portnichenko VI; Nosar VI; Sydorenko AM; Portnichenko AH; Man'kovs'ka IM
    Fiziol Zh (1994); 2012; 58(5):56-64. PubMed ID: 23233947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of hypoxia on mitochondrial stability].
    Tamarina NZ; Zakharevskiĭ AS
    Ukr Biokhim Zh; 1976; 48(3):292-4. PubMed ID: 960236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Intermittent hypoxic training and L-arginine as corrective agents for myocardial energy supply under acute hypoxia].
    Kurhaliuk NM; Serebrovs'ka TV; Nosar VI; Kolesnikova EE; Moĭbenko OO
    Ukr Biokhim Zh (1999); 2002; 74(1):82-7. PubMed ID: 12199105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of adaptation to hypoxia in energy metabolism in rats.
    Mimura Y; Furuya K
    J Am Coll Surg; 1995 Nov; 181(5):437-43. PubMed ID: 7582212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Intermittent hypoxic training with exogenous nitric oxide improves rat liver mitochondrial oxidation and phosphorylation during acute hypoxia].
    Serebrovs'ka TV; Kurgaliuk NM; Nosar VI; Kolesnikova IeE
    Fiziol Zh (1994); 2001; 47(1):85-92. PubMed ID: 11296563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The adaptational intracellular mechanisms regulating energy homeostasis during intermittent normobaric hypoxia].
    Lebkova NP; Chizhov AIa; Bobkov IuI
    Ross Fiziol Zh Im I M Sechenova; 1999 Mar; 85(3):403-11. PubMed ID: 10494591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats.
    Peterside IE; Selak MA; Simmons RA
    Am J Physiol Endocrinol Metab; 2003 Dec; 285(6):E1258-66. PubMed ID: 14607783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Molecular mechanisms of adaptation to hypoxia at high altitudes].
    Dávila BR
    Arch Inst Biol Andina; 1971; 4(1):1-14. PubMed ID: 5161930
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.