These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9045081)

  • 1. Size-related properties of vestibular afferent fibers in the frog: uptake of and immunoreactivity for glycine and aspartate/glutamate.
    Straka H; Reichengerger I; Dieringer N
    Neuroscience; 1996 Feb; 70(3):685-96. PubMed ID: 9045081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-related properties of vestibular afferent fibers in the frog: differential synaptic activation of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors.
    Straka H; Debler K; Dieringer N
    Neuroscience; 1996 Feb; 70(3):697-707. PubMed ID: 9045082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-related colocalization of glycine and glutamate immunoreactivity in frog and rat vestibular afferents.
    Reichenberger I; Dieringer N
    J Comp Neurol; 1994 Nov; 349(4):603-14. PubMed ID: 7860791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GABA, glycine, aspartate, glutamate and taurine in the vestibular nuclei: an immunocytochemical investigation in the cat.
    Walberg F; Ottersen OP; Rinvik E
    Exp Brain Res; 1990; 79(3):547-63. PubMed ID: 1971225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of GABA, glycine, and glutamate immunoreactivities in the vestibular nuclear complex of the frog.
    Reichenberger I; Straka H; Ottersen OP; Streit P; Gerrits NM; Dieringer N
    J Comp Neurol; 1997 Jan; 377(2):149-64. PubMed ID: 8986878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal uptake and laminar distribution of tritiated aspartate, glutamate, gamma-aminobutyrate and glycine in the prestriate cortex of squirrel monkeys: correlation with levels of cytochrome oxidase activity and their uptake in area 17.
    Carroll EW; Wong-Riley M
    Neuroscience; 1987 Aug; 22(2):395-412. PubMed ID: 2890120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective retrograde labeling of neurons of the cat vestibular ganglion with [3H]D-aspartate.
    Dememes D; Raymond J; Sans A
    Brain Res; 1984 Jun; 304(1):188-91. PubMed ID: 6744038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncrossed disynaptic inhibition of second-order vestibular neurons and its interaction with monosynaptic excitation from vestibular nerve afferent fibers in the frog.
    Straka H; Dieringer N
    J Neurophysiol; 1996 Nov; 76(5):3087-101. PubMed ID: 8930257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of primary vestibular fibers in the brainstem and cerebellum of the monkey.
    Carleton SC; Carpenter MB
    Brain Res; 1984 Mar; 294(2):281-98. PubMed ID: 6200186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunocytochemical localization of aspartate and glutamate in the peripheral vestibular system.
    Harper A; Blythe WR; Grossman G; Petrusz P; Prazma J; Pillsbury HC
    Hear Res; 1995 Jun; 86(1-2):171-82. PubMed ID: 8567414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aspartate-like immunoreactivity in primary afferent neurons.
    Tracey DJ; De Biasi S; Phend K; Rustioni A
    Neuroscience; 1991; 40(3):673-86. PubMed ID: 1676493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical evidence that L-glutamate is a neurotransmitter of primary vagal afferent nerve fibers.
    Perrone MH
    Brain Res; 1981 Dec; 230(1-2):283-93. PubMed ID: 6172183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroanatomical evidence that vagal afferent nerves do not possess a high affinity uptake system for glutamate.
    Sved AF; Backes MG
    J Auton Nerv Syst; 1992 May; 38(3):219-29. PubMed ID: 1351899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between cytochrome oxidase staining and the uptake and laminar distribution of tritiated aspartate, glutamate, gamma-aminobutyrate and glycine in the striate cortex of the squirrel monkey.
    Carroll EW; Wong-Riley M
    Neuroscience; 1985 Aug; 15(4):959-76. PubMed ID: 2413391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological and electrophysiological consequences of unilateral pre- versus postganglionic vestibular lesions in the frog.
    Kunkel AW; Dieringer N
    J Comp Physiol A; 1994 May; 174(5):621-32. PubMed ID: 8006858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitatory amino acid projections to the periaqueductal gray in the rat: a retrograde transport study utilizing D[3H]aspartate and [3H]GABA.
    Beart PM; Summers RJ; Stephenson JA; Cook CJ; Christie MJ
    Neuroscience; 1990; 34(1):163-76. PubMed ID: 2325847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retrograde labeling of dorsal root ganglion neurons after injection of tritiated amino acids in the spinal cord of rats and cats.
    Barbaresi P; Rustioni A; Cuénod M
    Somatosens Res; 1985; 3(1):57-74. PubMed ID: 2999943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective retrograde transport of D-aspartate in spinal interneurons and cortical neurons of rats.
    Rustioni A; Cuenod M
    Brain Res; 1982 Mar; 236(1):143-55. PubMed ID: 6175376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective retrograde labeling with D-[3H]-aspartate in afferents to the mammalian superior colliculus.
    Matute C; Streit P
    J Comp Neurol; 1985 Nov; 241(1):34-49. PubMed ID: 2997308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential inhibitory control of semicircular canal nerve afferent-evoked inputs in second-order vestibular neurons by glycinergic and GABAergic circuits.
    Biesdorf S; Malinvaud D; Reichenberger I; Pfanzelt S; Straka H
    J Neurophysiol; 2008 Apr; 99(4):1758-69. PubMed ID: 18256163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.