These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Role of individual cysteine residues and disulfide bonds in the structure and function of Aspergillus ribonucleolytic toxin restrictocin. Nayak SK; Rathore D; Batra JK Biochemistry; 1999 Aug; 38(31):10052-8. PubMed ID: 10433712 [TBL] [Abstract][Full Text] [Related]
4. Phospholipase A2 engineering. The roles of disulfide bonds in structure, conformational stability, and catalytic function. Zhu H; Dupureur CM; Zhang X; Tsai MD Biochemistry; 1995 Nov; 34(46):15307-14. PubMed ID: 7578147 [TBL] [Abstract][Full Text] [Related]
5. Role of disulfide bonds in goose-type lysozyme. Kawamura S; Ohkuma M; Chijiiwa Y; Kohno D; Nakagawa H; Hirakawa H; Kuhara S; Torikata T FEBS J; 2008 Jun; 275(11):2818-30. PubMed ID: 18430025 [TBL] [Abstract][Full Text] [Related]
6. Highly conserved cysteines of mouse core 2 beta1,6-N-acetylglucosaminyltransferase I form a network of disulfide bonds and include a thiol that affects enzyme activity. Yen TY; Macher BA; Bryson S; Chang X; Tvaroska I; Tse R; Takeshita S; Lew AM; Datti A J Biol Chem; 2003 Nov; 278(46):45864-81. PubMed ID: 12954635 [TBL] [Abstract][Full Text] [Related]
7. Disulfide analysis reveals a role for macrophage migration inhibitory factor (MIF) as thiol-protein oxidoreductase. Kleemann R; Kapurniotu A; Frank RW; Gessner A; Mischke R; Flieger O; Jüttner S; Brunner H; Bernhagen J J Mol Biol; 1998 Jul; 280(1):85-102. PubMed ID: 9653033 [TBL] [Abstract][Full Text] [Related]
8. Site-directed mutagenesis of conserved cysteine residues in porcine membrane dipeptidase. Cys 361 alone is involved in disulfide-linked dimerization. Keynan S; Habgood NT; Hooper NM; Turner AJ Biochemistry; 1996 Sep; 35(38):12511-7. PubMed ID: 8823187 [TBL] [Abstract][Full Text] [Related]
9. Conformation of factor VIIa stabilized by a labile disulfide bond (Cys-310-Cys-329) in the protease domain is essential for interaction with tissue factor. Higashi S; Matsumoto N; Iwanaga S J Biol Chem; 1997 Oct; 272(41):25724-30. PubMed ID: 9325298 [TBL] [Abstract][Full Text] [Related]
10. "Designing out" disulfide bonds: thermodynamic properties of 30-51 cystine substitution mutants of bovine pancreatic trypsin inhibitor. Liu Y; Breslauer K; Anderson S Biochemistry; 1997 May; 36(18):5323-35. PubMed ID: 9154914 [TBL] [Abstract][Full Text] [Related]
11. Defective export in Escherichia coli caused by DsbA'-PhoA hybrid proteins whose DsbA' domain cannot fold into a conformation resistant to periplasmic proteases. Guigueno A; Belin P; Boquet PL J Bacteriol; 1997 May; 179(10):3260-9. PubMed ID: 9150222 [TBL] [Abstract][Full Text] [Related]
12. Impact of cysteine variants on the structure, activity, and stability of recombinant human α-galactosidase A. Qiu H; Honey DM; Kingsbury JS; Park A; Boudanova E; Wei RR; Pan CQ; Edmunds T Protein Sci; 2015 Sep; 24(9):1401-11. PubMed ID: 26044846 [TBL] [Abstract][Full Text] [Related]
13. Isomers of epidermal growth factor with Ser --> Cys mutation at the N-terminal sequence: isomerization, stability, unfolding, refolding, and structure. Lu BY; Jiang C; Chang JY Biochemistry; 2005 Nov; 44(45):15032-41. PubMed ID: 16274250 [TBL] [Abstract][Full Text] [Related]
14. Characterization of cysteine residues and disulfide bonds in proteins by liquid chromatography/electrospray ionization tandem mass spectrometry. Yen TY; Joshi RK; Yan H; Seto NO; Palcic MM; Macher BA J Mass Spectrom; 2000 Aug; 35(8):990-1002. PubMed ID: 10972999 [TBL] [Abstract][Full Text] [Related]
15. Replacement of the active-site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Zapun A; Cooper L; Creighton TE Biochemistry; 1994 Feb; 33(7):1907-14. PubMed ID: 8110795 [TBL] [Abstract][Full Text] [Related]
16. Engineered disulfide bonds increase active-site local stability and reduce catalytic activity of a cold-adapted alkaline phosphatase. Asgeirsson B; Adalbjörnsson BV; Gylfason GA Biochim Biophys Acta; 2007 Jun; 1774(6):679-87. PubMed ID: 17493882 [TBL] [Abstract][Full Text] [Related]
17. Location of intrachain disulfide bonds in the VP5* and VP8* trypsin cleavage fragments of the rhesus rotavirus spike protein VP4. Patton JT; Hua J; Mansell EA J Virol; 1993 Aug; 67(8):4848-55. PubMed ID: 8392619 [TBL] [Abstract][Full Text] [Related]
18. Disulfide-dependent folding and export of Escherichia coli DsbC. Liu X; Wang CC J Biol Chem; 2001 Jan; 276(2):1146-51. PubMed ID: 11042167 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of the thermostability of subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with a thermophilic serine protease. Takagi H; Takahashi T; Momose H; Inouye M; Maeda Y; Matsuzawa H; Ohta T J Biol Chem; 1990 Apr; 265(12):6874-8. PubMed ID: 2108962 [TBL] [Abstract][Full Text] [Related]
20. Disulfide bonding arrangements in active forms of the somatomedin B domain of human vitronectin. Kamikubo Y; De Guzman R; Kroon G; Curriden S; Neels JG; Churchill MJ; Dawson P; Ołdziej S; Jagielska A; Scheraga HA; Loskutoff DJ; Dyson HJ Biochemistry; 2004 Jun; 43(21):6519-34. PubMed ID: 15157085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]