BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 9045659)

  • 1. Functional subdomains of yeast elongation factor 3. Localization of ribosome-binding domain.
    Kambampati R; Chakraburtty K
    J Biol Chem; 1997 Mar; 272(10):6377-81. PubMed ID: 9045659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limited proteolysis of yeast elongation factor 3. Sequence and location of the subdomains.
    Kambampati R; Pellegrino C; Paiva A; Huang L; Mende-Mueller L; Chakraburtty K
    J Biol Chem; 2000 Jun; 275(22):16963-8. PubMed ID: 10747994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional interaction of yeast elongation factor 3 with yeast ribosomes.
    Chakraburtty K
    Int J Biochem Cell Biol; 1999 Jan; 31(1):163-73. PubMed ID: 10216951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domain structure analysis of elongation factor-3 from Saccharomyces cerevisiae by limited proteolysis and differential scanning calorimetry.
    Ladror US; Egan DA; Snyder SW; Capobianco JO; Goldman RC; Dorwin SA; Johnson RW; Edalji R; Sarthy AV; McGonigal T; Walter KA; Holzman TF
    Protein Sci; 1998 Dec; 7(12):2595-601. PubMed ID: 9865954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of ribosome-associated adenosinetriphosphatase (ATPase) from pig liver and the ATPase of elongation factor 3 from Saccharomyces cerevisiae.
    Kovalchuke O; Chakraburtty K
    Eur J Biochem; 1994 Nov; 226(1):133-40. PubMed ID: 7957240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competition and cooperation amongst yeast elongation factors.
    Kovalchuke O; Kambampati R; Pladies E; Chakraburtty K
    Eur J Biochem; 1998 Dec; 258(3):986-93. PubMed ID: 9990316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soluble factor requirements for the Tetrahymena peptide elongation system and the ribosomal ATPase as a counterpart of yeast elongation factor 3 (EF-3).
    Miyazaki M; Kagiyama H
    J Biochem; 1990 Dec; 108(6):1001-8. PubMed ID: 2150964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of ATPase of yeast elongation factor 3 and ATPase associated with Tetrahymena ribosomes.
    Kovalchuke O; Ziehler J; Chakraburtty K
    Biochimie; 1995; 77(9):713-18. PubMed ID: 8789461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic ATPase activity of yeast peptide chain elongation factor 3(EF-3) and its direct interaction with various nucleotides.
    Miyazaki M; Uritani M; Kagiyama H
    Nucleic Acids Symp Ser; 1986; (17):171-4. PubMed ID: 2951656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translation elongation factor-3 (EF-3): an evolving eukaryotic ribosomal protein?
    Belfield GP; Ross-Smith NJ; Tuite MF
    J Mol Evol; 1995 Sep; 41(3):376-87. PubMed ID: 7563124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation of yeast EF-3 factor by mammalian ribosomes.
    El'skaya EV; Serebryanik AI; Ovcharenko GV
    Ukr Biokhim Zh (1978); 1995; 67(6):28-32. PubMed ID: 8867308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The N terminus of eukaryotic translation elongation factor 3 interacts with 18 S rRNA and 80 S ribosomes.
    Gontarek RR; Li H; Nurse K; Prescott CD
    J Biol Chem; 1998 Apr; 273(17):10249-52. PubMed ID: 9553076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The yeast peptide elongation factor 3 (EF-3) carries an active site for ATP hydrolysis which can interact with various nucleoside triphosphates in the absence of ribosomes.
    Miyazaki M; Uritani M; Kagiyama H
    J Biochem; 1988 Sep; 104(3):445-50. PubMed ID: 2977132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A point mutation within each of two ATP-binding motifs inactivates the functions of elongation factor 3.
    Yang H; Hamada K; Terashima H; Izuta M; Yamaguchi-Sihta E; Kondoh O; Satoh H; Miyazaki M; Arisawa M; Miyamoto C; Kitada K
    Biochim Biophys Acta; 1996 Feb; 1310(3):303-8. PubMed ID: 8599608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A monoclonal antibody specific for carboxy-terminal region of yeast translation elongation factor-3 inhibits ribosome-activated ATPase activity but not intrinsic ATPase activity.
    Masahiro U; Atsushi T; Kazutoshi N; Miho I; Makoto I; Mikio A
    Biochem Mol Biol Int; 1996 May; 39(2):227-34. PubMed ID: 8799448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATPase strongly bound to higher eukaryotic ribosomes.
    Rodnina MV; Serebryanik AI; Ovcharenko GV; El'Skaya AV
    Eur J Biochem; 1994 Oct; 225(1):305-10. PubMed ID: 7925450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyamino acids that inhibit the interaction of yeast translational elongation factor-3 (EF-3) with ribosomes.
    Uritani M; Nakano K; Aoki Y; Shimada H; Arisawa M
    J Biochem; 1994 May; 115(5):820-4. PubMed ID: 7525545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide elongation factor 1 from yeasts: purification and biochemical characterization of peptide elongation factors 1 alpha and 1 beta (gamma) from Saccharomyces carlsbergensis and Schizosaccharomyces pombe.
    Miyazaki M; Uritani M; Fujimura K; Yamakatsu H; Kageyama T; Takahashi K
    J Biochem; 1988 Mar; 103(3):508-21. PubMed ID: 3214489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional studies of the interaction of the eukaryotic elongation factor EF-2 with GTP and ribosomes.
    Nilsson L; Nygård O
    Eur J Biochem; 1988 Jan; 171(1-2):293-9. PubMed ID: 3338467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of yeast elongation factor 3 with polynucleotides, ribosomal RNA and ribosomal subunits.
    Kovalchuke O; Chakraburtty K
    Indian J Biochem Biophys; 1995 Dec; 32(6):336-42. PubMed ID: 8714201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.