BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 9045705)

  • 1. A three-protein-DNA complex on a B cell-specific domain of the immunoglobulin mu heavy chain gene enhancer.
    Rao E; Dang W; Tian G; Sen R
    J Biol Chem; 1997 Mar; 272(10):6722-32. PubMed ID: 9045705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ETS-mediated cooperation between basic helix-loop-helix motifs of the immunoglobulin mu heavy-chain gene enhancer.
    Dang W; Sun XH; Sen R
    Mol Cell Biol; 1998 Mar; 18(3):1477-88. PubMed ID: 9488464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise alignment of sites required for mu enhancer activation in B cells.
    Nikolajczyk BS; Nelsen B; Sen R
    Mol Cell Biol; 1996 Aug; 16(8):4544-54. PubMed ID: 8754855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional activation by ETS and leucine zipper-containing basic helix-loop-helix proteins.
    Tian G; Erman B; Ishii H; Gangopadhyay SS; Sen R
    Mol Cell Biol; 1999 Apr; 19(4):2946-57. PubMed ID: 10082562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ETS-core binding factor: a common composite motif in antigen receptor gene enhancers.
    Erman B; Cortes M; Nikolajczyk BS; Speck NA; Sen R
    Mol Cell Biol; 1998 Mar; 18(3):1322-30. PubMed ID: 9488447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dominant-negative HMGA1 blocks mu enhancer activation through a novel mechanism.
    Andreucci A; Reeves R; McCarthy KM; Nikolajczyk BS
    Biochem Biophys Res Commun; 2002 Mar; 292(2):427-33. PubMed ID: 11906180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of lymphoid-specific immunoglobulin mu heavy chain gene enhancer by ETS-domain proteins.
    Nelsen B; Tian G; Erman B; Gregoire J; Maki R; Graves B; Sen R
    Science; 1993 Jul; 261(5117):82-6. PubMed ID: 8316859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinatorial determinants of tissue-specific transcription in B cells and macrophages.
    Nikolajczyk BS; Cortes M; Feinman R; Sen R
    Mol Cell Biol; 1997 Jul; 17(7):3527-35. PubMed ID: 9199288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Context dependent transactivation domains activate the immunoglobulin mu heavy chain gene enhancer.
    Erman B; Sen R
    EMBO J; 1996 Sep; 15(17):4665-75. PubMed ID: 8887557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ETS protein-dependent accessibility changes at the immunoglobulin mu heavy chain enhancer.
    Nikolajczyk BS; Sanchez JA; Sen R
    Immunity; 1999 Jul; 11(1):11-20. PubMed ID: 10435575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring functional redundancy in the immunoglobulin mu heavy-chain gene enhancer.
    Dang W; Nikolajczyk BS; Sen R
    Mol Cell Biol; 1998 Nov; 18(11):6870-8. PubMed ID: 9774700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective utilization of basic helix-loop-helix-leucine zipper proteins at the immunoglobulin heavy-chain enhancer.
    Carter RS; Ordentlich P; Kadesch T
    Mol Cell Biol; 1997 Jan; 17(1):18-23. PubMed ID: 8972181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HMGA1 co-activates transcription in B cells through indirect association with DNA.
    McCarthy KM; McDevit D; Andreucci A; Reeves R; Nikolajczyk BS
    J Biol Chem; 2003 Oct; 278(43):42106-14. PubMed ID: 12907668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The basic helix-loop-helix-zipper domain of TFE3 mediates enhancer-promoter interaction.
    Artandi SE; Cooper C; Shrivastava A; Calame K
    Mol Cell Biol; 1994 Dec; 14(12):7704-16. PubMed ID: 7969114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer muE3 motif.
    Beckmann H; Su LK; Kadesch T
    Genes Dev; 1990 Feb; 4(2):167-79. PubMed ID: 2338243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial control of DNase I-hypersensitive site formation and erasure by immunoglobulin heavy chain enhancer-binding proteins.
    Ishii H; Sen R; Pazin MJ
    J Biol Chem; 2004 Feb; 279(8):7331-8. PubMed ID: 14660676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TFEC, a basic helix-loop-helix protein, forms heterodimers with TFE3 and inhibits TFE3-dependent transcription activation.
    Zhao GQ; Zhao Q; Zhou X; Mattei MG; de Crombrugghe B
    Mol Cell Biol; 1993 Aug; 13(8):4505-12. PubMed ID: 8336698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An IgH enhancer that drives transcription through basic helix-loop-helix and Oct transcription factor binding motifs. Functional analysis of the E(mu)3' enhancer of the catfish.
    Cioffi CC; Middleton DL; Wilson MR; Miller NW; Clem LW; Warr GW
    J Biol Chem; 2001 Jul; 276(30):27825-30. PubMed ID: 11375977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic interactions between overlapping binding sites for the serum response factor and ELK-1 proteins mediate both basal enhancement and phorbol ester responsiveness of primate cytomegalovirus major immediate-early promoters in monocyte and T-lymphocyte cell types.
    Chan YJ; Chiou CJ; Huang Q; Hayward GS
    J Virol; 1996 Dec; 70(12):8590-605. PubMed ID: 8970984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PU.1 as a chromatin accessibility factor for immunoglobulin genes.
    Marecki S; McCarthy KM; Nikolajczyk BS
    Mol Immunol; 2004 Jan; 40(10):723-31. PubMed ID: 14644098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.