These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 9045817)
1. Molecular genetic characterization of the Escherichia coli gntT gene of GntI, the main system for gluconate metabolism. Porco A; Peekhaus N; Bausch C; Tong S; Isturiz T; Conway T J Bacteriol; 1997 Mar; 179(5):1584-90. PubMed ID: 9045817 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the gntT gene encoding a high-affinity gluconate permease in Escherichia coli. Izu H; Kawai T; Yamada Y; Aoshima H; Adachi O; Yamada M Gene; 1997 Oct; 199(1-2):203-10. PubMed ID: 9358057 [TBL] [Abstract][Full Text] [Related]
3. Cloning and molecular genetic characterization of the Escherichia coli gntR, gntK, and gntU genes of GntI, the main system for gluconate metabolism. Tong S; Porco A; Isturiz T; Conway T J Bacteriol; 1996 Jun; 178(11):3260-9. PubMed ID: 8655507 [TBL] [Abstract][Full Text] [Related]
4. Positive and negative transcriptional regulation of the Escherichia coli gluconate regulon gene gntT by GntR and the cyclic AMP (cAMP)-cAMP receptor protein complex. Peekhaus N; Conway T J Bacteriol; 1998 Apr; 180(7):1777-85. PubMed ID: 9537375 [TBL] [Abstract][Full Text] [Related]
5. The activator of GntII genes for gluconate metabolism, GntH, exerts negative control of GntR-regulated GntI genes in Escherichia coli. Tsunedomi R; Izu H; Kawai T; Matsushita K; Ferenci T; Yamada M J Bacteriol; 2003 Mar; 185(6):1783-95. PubMed ID: 12618441 [TBL] [Abstract][Full Text] [Related]
6. Selection of lacZ operon fusions in genes of gluconate metabolism in E. coli. characterization of a gntT::lacZ fusion. Porco A; Istúriz T Acta Cient Venez; 1991; 42(5):270-5. PubMed ID: 1843569 [TBL] [Abstract][Full Text] [Related]
7. The gluconate high affinity transport of GntI in Escherichia coli involves a multicomponent complex system. Porco A; Alonso G; Istúriz T J Basic Microbiol; 1998; 38(5-6):395-404. PubMed ID: 9871335 [TBL] [Abstract][Full Text] [Related]
8. Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. Letek M; Valbuena N; Ramos A; Ordóñez E; Gil JA; Mateos LM J Bacteriol; 2006 Jan; 188(2):409-23. PubMed ID: 16385030 [TBL] [Abstract][Full Text] [Related]
9. Involvement of gntS in the control of GntI, the main system for gluconate metabolism in Escherichia coli. Istúriz T; Díaz-Benjumea R; Rodriguez N; Porco A J Basic Microbiol; 2001; 41(2):75-83. PubMed ID: 11441462 [TBL] [Abstract][Full Text] [Related]
10. Gene organization and transcriptional regulation of the gntRKU operon involved in gluconate uptake and catabolism of Escherichia coli. Izu H; Adachi O; Yamada M J Mol Biol; 1997 Apr; 267(4):778-93. PubMed ID: 9135111 [TBL] [Abstract][Full Text] [Related]
11. The gntP gene of Escherichia coli involved in gluconate uptake. Klemm P; Tong S; Nielsen H; Conway T J Bacteriol; 1996 Jan; 178(1):61-7. PubMed ID: 8550444 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the Escherichia coli gntT and gntU genes and comparison of the products with their homologues. Yamada M; Kawai T; Izu H Biosci Biotechnol Biochem; 1996 Sep; 60(9):1548-50. PubMed ID: 8987614 [TBL] [Abstract][Full Text] [Related]
13. The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator. Fujita Y; Fujita T Proc Natl Acad Sci U S A; 1987 Jul; 84(13):4524-8. PubMed ID: 3037520 [TBL] [Abstract][Full Text] [Related]
14. A mutation affecting gluconate catabolism in Escherichia coli: the locus for the main high affinity transport. De Rekarte UD; Istúriz T Acta Cient Venez; 1994; 45(2):96-101. PubMed ID: 8731292 [TBL] [Abstract][Full Text] [Related]
15. Dual control by regulators, GntH and GntR, of the GntII genes for gluconate metabolism in Escherichia coli. Tsunedomi R; Izu H; Kawai T; Yamada M J Mol Microbiol Biotechnol; 2003; 6(1):41-56. PubMed ID: 14593252 [TBL] [Abstract][Full Text] [Related]
16. The subsidiary GntII system for gluconate metabolism in Escherichia coli: alternative induction of the gntV gene. Gómez KM; Rodríguez A; Rodriguez Y; Ramírez AH; Istúriz T Biol Res; 2011; 44(3):269-75. PubMed ID: 22688914 [TBL] [Abstract][Full Text] [Related]
17. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional organization and regulation of the L-idonic acid pathway (GntII system) in Escherichia coli. Bausch C; Ramsey M; Conway T J Bacteriol; 2004 Mar; 186(5):1388-97. PubMed ID: 14973046 [TBL] [Abstract][Full Text] [Related]
19. Isolation of a novel paraquat-inducible (pqi) gene regulated by the soxRS locus in Escherichia coli. Koh YS; Roe JH J Bacteriol; 1995 May; 177(10):2673-8. PubMed ID: 7751275 [TBL] [Abstract][Full Text] [Related]
20. Determination of the cis sequence involved in catabolite repression of the Bacillus subtilis gnt operon; implication of a consensus sequence in catabolite repression in the genus Bacillus. Miwa Y; Fujita Y Nucleic Acids Res; 1990 Dec; 18(23):7049-53. PubMed ID: 2124676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]