BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1171 related articles for article (PubMed ID: 9045819)

  • 21. AraR, an l-Arabinose-Responsive Transcriptional Regulator in Corynebacterium glutamicum ATCC 31831, Exerts Different Degrees of Repression Depending on the Location of Its Binding Sites within the Three Target Promoter Regions.
    Kuge T; Teramoto H; Inui M
    J Bacteriol; 2015 Dec; 197(24):3788-96. PubMed ID: 26416832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arm-domain interactions in AraC.
    Saviola B; Seabold R; Schleif RF
    J Mol Biol; 1998 May; 278(3):539-48. PubMed ID: 9600837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK.
    Yuan G; Wong SL
    J Bacteriol; 1995 Nov; 177(22):6462-8. PubMed ID: 7592421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis.
    Gardan R; Rapoport G; Débarbouillé M
    J Mol Biol; 1995 Jun; 249(5):843-56. PubMed ID: 7540694
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MalI, a novel protein involved in regulation of the maltose system of Escherichia coli, is highly homologous to the repressor proteins GalR, CytR, and LacI.
    Reidl J; Römisch K; Ehrmann M; Boos W
    J Bacteriol; 1989 Sep; 171(9):4888-99. PubMed ID: 2670898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Positively regulated expression of the Escherichia coli araBAD promoter in Corynebacterium glutamicum.
    Ben-Samoun K; Leblon G; Reyes O
    FEMS Microbiol Lett; 1999 May; 174(1):125-30. PubMed ID: 10234830
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The LacI-Type transcriptional regulator AraR acts as an L-arabinose-responsive repressor of L-arabinose utilization genes in Corynebacterium glutamicum ATCC 31831.
    Kuge T; Teramoto H; Yukawa H; Inui M
    J Bacteriol; 2014 Jun; 196(12):2242-54. PubMed ID: 24706742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A transcriptional activator, homologous to the Bacillus subtilis PurR repressor, is required for expression of purine biosynthetic genes in Lactococcus lactis.
    Kilstrup M; Martinussen J
    J Bacteriol; 1998 Aug; 180(15):3907-16. PubMed ID: 9683488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo induction kinetics of the arabinose promoters in Escherichia coli.
    Johnson CM; Schleif RF
    J Bacteriol; 1995 Jun; 177(12):3438-42. PubMed ID: 7768852
    [TBL] [Abstract][Full Text] [Related]  

  • 30. araB Gene and nucleotide sequence of the araC gene of Erwinia carotovora.
    Lei SP; Lin HC; Heffernan L; Wilcox G
    J Bacteriol; 1985 Nov; 164(2):717-22. PubMed ID: 3902795
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Similar organization of the nusA-infB operon in Bacillus subtilis and Escherichia coli.
    Shazand K; Tucker J; Grunberg-Manago M; Rabinowitz JC; Leighton T
    J Bacteriol; 1993 May; 175(10):2880-7. PubMed ID: 8491709
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteus mirabilis urease: operon fusion and linker insertion analysis of ure gene organization, regulation, and function.
    Island MD; Mobley HL
    J Bacteriol; 1995 Oct; 177(19):5653-60. PubMed ID: 7559355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum.
    Kawaguchi H; Sasaki M; Vertès AA; Inui M; Yukawa H
    Appl Environ Microbiol; 2009 Jun; 75(11):3419-29. PubMed ID: 19346355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator.
    Fujita Y; Fujita T
    Proc Natl Acad Sci U S A; 1987 Jul; 84(13):4524-8. PubMed ID: 3037520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon.
    Slack FJ; Serror P; Joyce E; Sonenshein AL
    Mol Microbiol; 1995 Feb; 15(4):689-702. PubMed ID: 7783641
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter.
    Guzman LM; Belin D; Carson MJ; Beckwith J
    J Bacteriol; 1995 Jul; 177(14):4121-30. PubMed ID: 7608087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of the effector-binding domain of the arabinose repressor AraR from Bacillus subtilis.
    Procházková K; Cermáková K; Pachl P; Sieglová I; Fábry M; Otwinowski Z; Rezáčová P
    Acta Crystallogr D Biol Crystallogr; 2012 Feb; 68(Pt 2):176-85. PubMed ID: 22281747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Upstream repression and CRP stimulation of the Escherichia coli L-arabinose operon.
    Hahn S; Dunn T; Schleif R
    J Mol Biol; 1984 Nov; 180(1):61-72. PubMed ID: 6392569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of rigidity in DNA looping-unlooping by AraC.
    Harmer T; Wu M; Schleif R
    Proc Natl Acad Sci U S A; 2001 Jan; 98(2):427-31. PubMed ID: 11209047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of the Bacillus subtilis pur operon repressor.
    Weng M; Nagy PL; Zalkin H
    Proc Natl Acad Sci U S A; 1995 Aug; 92(16):7455-9. PubMed ID: 7638212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 59.