These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 9045832)
1. Examination of the Tn5 transposase overproduction phenotype in Escherichia coli and localization of a suppressor of transposase overproduction killing that is an allele of rpoH. Yigit H; Reznikoff WS J Bacteriol; 1997 Mar; 179(5):1704-13. PubMed ID: 9045832 [TBL] [Abstract][Full Text] [Related]
2. Overexpression of the Tn5 transposase in Escherichia coli results in filamentation, aberrant nucleoid segregation, and cell death: analysis of E. coli and transposase suppressor mutations. Weinreich MD; Yigit H; Reznikoff WS J Bacteriol; 1994 Sep; 176(17):5494-504. PubMed ID: 8071228 [TBL] [Abstract][Full Text] [Related]
3. Escherichia coli DNA topoisomerase I and suppression of killing by Tn5 transposase overproduction: topoisomerase I modulates Tn5 transposition. Yigit H; Reznikoff WS J Bacteriol; 1998 Nov; 180(22):5866-74. PubMed ID: 9811643 [TBL] [Abstract][Full Text] [Related]
4. Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Gragerov A; Nudler E; Komissarova N; Gaitanaris GA; Gottesman ME; Nikiforov V Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10341-4. PubMed ID: 1359538 [TBL] [Abstract][Full Text] [Related]
5. In vivo effect of DNA relaxation on the transcription of gene rpoH in Escherichia coli. López-Sánchez F; Ramírez-Santos J; Gómez-Eichelmann MC Biochim Biophys Acta; 1997 Jul; 1353(1):79-83. PubMed ID: 9256067 [TBL] [Abstract][Full Text] [Related]
6. Hyperosmotic shock induces the sigma32 and sigmaE stress regulons of Escherichia coli. Bianchi AA; Baneyx F Mol Microbiol; 1999 Dec; 34(5):1029-38. PubMed ID: 10594827 [TBL] [Abstract][Full Text] [Related]
7. Escherichia coli DNA topoisomerase I copurifies with Tn5 transposase, and Tn5 transposase inhibits topoisomerase I. Yigit H; Reznikoff WS J Bacteriol; 1999 May; 181(10):3185-92. PubMed ID: 10322021 [TBL] [Abstract][Full Text] [Related]
8. A role of heat shock proteins for homologous recombination in Escherichia coli. Ogata Y; Miki T; Sekimizu K Biochem Biophys Res Commun; 1993 Nov; 197(1):34-9. PubMed ID: 7902713 [TBL] [Abstract][Full Text] [Related]
9. The effect of co-overproduction of DnaK/DnaJ/GrpE and ClpB proteins on the removal of heat-aggregated proteins from Escherichia coli DeltaclpB mutant cells--new insight into the role of Hsp70 in a functional cooperation with Hsp100. Kedzierska S; Matuszewska E FEMS Microbiol Lett; 2001 Nov; 204(2):355-60. PubMed ID: 11731148 [TBL] [Abstract][Full Text] [Related]
10. Suppression of rpoH (htpR) mutations of Escherichia coli: heat shock response in suhA revertants. Tobe T; Kusukawa N; Yura T J Bacteriol; 1987 Sep; 169(9):4128-34. PubMed ID: 3305481 [TBL] [Abstract][Full Text] [Related]
11. Isolation, identification, and transcriptional specificity of the heat shock sigma factor sigma32 from Caulobacter crescentus. Wu J; Newton A J Bacteriol; 1996 Apr; 178(7):2094-101. PubMed ID: 8606189 [TBL] [Abstract][Full Text] [Related]
12. Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. Kanemori M; Nishihara K; Yanagi H; Yura T J Bacteriol; 1997 Dec; 179(23):7219-25. PubMed ID: 9393683 [TBL] [Abstract][Full Text] [Related]
13. The heat shock response of Escherichia coli. Arsène F; Tomoyasu T; Bukau B Int J Food Microbiol; 2000 Apr; 55(1-3):3-9. PubMed ID: 10791710 [TBL] [Abstract][Full Text] [Related]
14. A distinct segment of the sigma 32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli. Nagai H; Yuzawa H; Kanemori M; Yura T Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10280-4. PubMed ID: 7937941 [TBL] [Abstract][Full Text] [Related]
15. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. Gamer J; Multhaup G; Tomoyasu T; McCarty JS; Rüdiger S; Schönfeld HJ; Schirra C; Bujard H; Bukau B EMBO J; 1996 Feb; 15(3):607-17. PubMed ID: 8599944 [TBL] [Abstract][Full Text] [Related]
16. Regulation of a heat shock sigma32 homolog in Caulobacter crescentus. Reisenauer A; Mohr CD; Shapiro L J Bacteriol; 1996 Apr; 178(7):1919-27. PubMed ID: 8606166 [TBL] [Abstract][Full Text] [Related]
17. Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32. Zhou YN; Kusukawa N; Erickson JW; Gross CA; Yura T J Bacteriol; 1988 Aug; 170(8):3640-9. PubMed ID: 2900239 [TBL] [Abstract][Full Text] [Related]
18. A chaperone network controls the heat shock response in E. coli. Guisbert E; Herman C; Lu CZ; Gross CA Genes Dev; 2004 Nov; 18(22):2812-21. PubMed ID: 15545634 [TBL] [Abstract][Full Text] [Related]
19. The rpoD gene functions as a multicopy suppressor for mutations in the chaperones, CbpA, DnaJ and DnaK, in Escherichia coli. Shiozawa T; Ueguchi C; Mizuno T FEMS Microbiol Lett; 1996 May; 138(2-3):245-50. PubMed ID: 9026454 [TBL] [Abstract][Full Text] [Related]
20. Co-induction of DNA relaxation and synthesis of DnaK and GroEL proteins in Escherichia coli by expression of LetD (CcdB) protein, an inhibitor of DNA gyrase encoded by the F factor. Kaneko T; Mizushima T; Ohtsuka Y; Kurokawa K; Kataoka K; Miki T; Sekimizu K Mol Gen Genet; 1996 Mar; 250(5):593-600. PubMed ID: 8676862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]