These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 9046185)

  • 1. Intervertebral disc response to cyclic loading--an animal model.
    Ekström L; Kaigle A; Hult E; Holm S; Rostedt M; Hansson T
    Proc Inst Mech Eng H; 1996; 210(4):249-58. PubMed ID: 9046185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo measurement of spinal column viscoelasticity--an animal model.
    Hult E; Ekström L; Kaigle A; Holm S; Hansson T
    Proc Inst Mech Eng H; 1995; 209(2):105-10; discussion 135. PubMed ID: 7495424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The viscoelastic standard nonlinear solid model: predicting the response of the lumbar intervertebral disk to low-frequency vibrations.
    Groth KM; Granata KP
    J Biomech Eng; 2008 Jun; 130(3):031005. PubMed ID: 18532854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biexponential recovery model of lumbar viscoelastic laxity and reflexive muscular activity after prolonged cyclic loading.
    Solomonow M; He Zhou B; Baratta RV; Lu Y; Zhu M; Harris M
    Clin Biomech (Bristol); 2000 Mar; 15(3):167-75. PubMed ID: 10656978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment.
    Araújo ÂR; Peixinho N; Pinho AC; Claro JC
    Acta Bioeng Biomech; 2015; 17(4):59-66. PubMed ID: 26900017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo porcine intradiscal pressure as a function of external loading.
    Ekström L; Holm S; Holm AK; Hansson T
    J Spinal Disord Tech; 2004 Aug; 17(4):312-6. PubMed ID: 15280761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression.
    Li S; Patwardhan AG; Amirouche FM; Havey R; Meade KP
    J Biomech; 1995 Jul; 28(7):779-90. PubMed ID: 7657676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis.
    Pollintine P; van Tunen MS; Luo J; Brown MD; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2010 Feb; 35(4):386-94. PubMed ID: 20110846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo dynamic stiffness of the porcine lumbar spine exposed to cyclic loading: influence of load and degeneration.
    Kaigle A; Ekström L; Holm S; Rostedt M; Hansson T
    J Spinal Disord; 1998 Feb; 11(1):65-70. PubMed ID: 9493772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creep experimental study on the lumbar intervertebral disk under vibration compression load.
    Yang X; Cheng X; Luan Y; Liu Q; Zhang C
    Proc Inst Mech Eng H; 2019 Aug; 233(8):858-867. PubMed ID: 31203788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of fluid loss on the viscoelastic behavior of the lumbar intervertebral disc in compression.
    Lu YM; Hutton WC; Gharpuray VM
    J Biomech Eng; 1998 Feb; 120(1):48-54. PubMed ID: 9675680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of creep on human lumbar intervertebral disk impact mechanics.
    Jamison D; Marcolongo MS
    J Biomech Eng; 2014 Mar; 136(3):031006. PubMed ID: 24292391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of loading rate and hydration on the mechanical properties of the disc.
    Race A; Broom ND; Robertson P
    Spine (Phila Pa 1976); 2000 Mar; 25(6):662-9. PubMed ID: 10752096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different effects of static versus cyclic compressive loading on rat intervertebral disc height and water loss in vitro.
    Masuoka K; Michalek AJ; MacLean JJ; Stokes IA; Iatridis JC
    Spine (Phila Pa 1976); 2007 Aug; 32(18):1974-9. PubMed ID: 17700443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1990 Volvo Award in experimental studies. The dependence of intervertebral disc mechanical properties on physiologic conditions.
    Keller TS; Holm SH; Hansson TH; Spengler DM
    Spine (Phila Pa 1976); 1990 Aug; 15(8):751-61. PubMed ID: 2237625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo age- and sex-related creep of human lumbar motion segments and discs in pure centric tension.
    Kurutz M
    J Biomech; 2006; 39(7):1180-90. PubMed ID: 15925372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intervertebral disc mechanics are restored following cyclic loading and unloaded recovery.
    Johannessen W; Vresilovic EJ; Wright AC; Elliott DM
    Ann Biomed Eng; 2004 Jan; 32(1):70-6. PubMed ID: 14964723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Experiments study on mechanical behavior of porcine lumbar intervertebral disc after nucleotomy under compression].
    Zhu S; Yang X; Luan Y; Liu Q; Zhang C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Aug; 36(4):590-595. PubMed ID: 31441259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study.
    Fagan MJ; Julian S; Siddall DJ; Mohsen AM
    Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.