These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. A new design for polyurethane heart valves. Butterfield M; Wheatley DJ; Williams DF; Fisher J J Heart Valve Dis; 2001 Jan; 10(1):105-10. PubMed ID: 11206756 [TBL] [Abstract][Full Text] [Related]
24. Modelling secondary lymphatic valves with a flexible vessel wall: how geometry and material properties combine to provide function. Bertram CD Biomech Model Mechanobiol; 2020 Dec; 19(6):2081-2098. PubMed ID: 32303880 [TBL] [Abstract][Full Text] [Related]
26. Development of a Transcatheter Tricuspid Valve Prosthesis Through Steps of Iterative Optimization and Finite Element Analysis. Pott D; Kütting M; Zhong Z; Amerini A; Spillner J; Autschbach R; Steinseifer U Artif Organs; 2015 Oct; 39(10):903-15. PubMed ID: 26378868 [TBL] [Abstract][Full Text] [Related]
27. Polyurethane heart valve durability: effects of leaflet thickness and material. Bernacca GM; Mackay TG; Gulbransen MJ; Donn AW; Wheatley DJ Int J Artif Organs; 1997 Jun; 20(6):327-31. PubMed ID: 9259209 [TBL] [Abstract][Full Text] [Related]
28. Simulated transcatheter aortic valve deformation: A parametric study on the impact of leaflet geometry on valve peak stress. Li K; Sun W Int J Numer Method Biomed Eng; 2017 Mar; 33(3):. PubMed ID: 27327357 [TBL] [Abstract][Full Text] [Related]
29. Influence of stent height upon stresses on the cusps of closed bioprosthetic valves. Hamid MS; Sabbah HN; Stein PD J Biomech; 1986; 19(9):759-69. PubMed ID: 3793750 [TBL] [Abstract][Full Text] [Related]
31. Static and dynamic stresses during valve closure of a bileaflet mechanical heart valve prosthesis. Chiang TH; Lam H; Quijano R; Donham R; Gilliam P; Heinz LA Int J Artif Organs; 1991 Dec; 14(12):781-8. PubMed ID: 1783453 [TBL] [Abstract][Full Text] [Related]
32. A finite element model on effects of impact load and cavitation on fatigue crack propagation in mechanical bileaflet aortic heart valve. Mohammadi H; Klassen RJ; Wan WK Proc Inst Mech Eng H; 2008 Oct; 222(7):1115-25. PubMed ID: 19024159 [TBL] [Abstract][Full Text] [Related]
33. A three-dimensional analysis of a fibre-reinforced aortic valve prosthesis. De Hart J; Cacciola G; Schreurs PJ; Peters GW J Biomech; 1998 Jul; 31(7):629-38. PubMed ID: 9796685 [TBL] [Abstract][Full Text] [Related]
34. Stress analysis of the aortic valve with and without the sinuses of valsalva. Beck A; Thubrikar MJ; Robicsek F J Heart Valve Dis; 2001 Jan; 10(1):1-11. PubMed ID: 11206754 [TBL] [Abstract][Full Text] [Related]
35. Dynamics of flow in a mechanical heart valve: the role of leaflet inertia and leaflet compliance. Gkanis V; Housiadas C J Biomech Eng; 2011 Apr; 133(4):041009. PubMed ID: 21428683 [TBL] [Abstract][Full Text] [Related]
37. Close-range stereophotogrammetry and coupled stress analysis as tools in the development of prosthetic devices. Clark RE; Karara HM; Cataloglu A; Gould PL Trans Am Soc Artif Intern Organs; 1975; 21():71-8. PubMed ID: 1146041 [TBL] [Abstract][Full Text] [Related]
38. Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis. Jiang H; Campbell G; Boughner D; Wan WK; Quantz M Med Eng Phys; 2004 May; 26(4):269-77. PubMed ID: 15121052 [TBL] [Abstract][Full Text] [Related]
39. Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve. Smuts AN; Blaine DC; Scheffer C; Weich H; Doubell AF; Dellimore KH J Mech Behav Biomed Mater; 2011 Jan; 4(1):85-98. PubMed ID: 21094482 [TBL] [Abstract][Full Text] [Related]
40. Biomaterial optimization in a percutaneous aortic valve stent using finite element analysis. Kumar GV; Mathew L Cardiovasc Revasc Med; 2009; 10(4):247-51. PubMed ID: 19815172 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]