These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9046247)

  • 21. Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes.
    Douglas SE; Murphy CA; Spencer DF; Gray MW
    Nature; 1991 Mar; 350(6314):148-51. PubMed ID: 2005963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleus-encoded periplastid-targeted EFL in chlorarachniophytes.
    Gile GH; Keeling PJ
    Mol Biol Evol; 2008 Sep; 25(9):1967-77. PubMed ID: 18599495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nucleus- and nucleomorph-targeted histone proteins in a chlorarachniophyte alga.
    Hirakawa Y; Burki F; Keeling PJ
    Mol Microbiol; 2011 Jun; 80(6):1439-49. PubMed ID: 21470316
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Jam packed genomes--a preliminary, comparative analysis of nucleomorphs.
    Gilson PR; McFadden GI
    Genetica; 2002 May; 115(1):13-28. PubMed ID: 12188044
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga.
    McFadden GI; Gilson PR; Hofmann CJ; Adcock GJ; Maier UG
    Proc Natl Acad Sci U S A; 1994 Apr; 91(9):3690-4. PubMed ID: 8170970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes.
    Nowack EC; Melkonian M; Glöckner G
    Curr Biol; 2008 Mar; 18(6):410-8. PubMed ID: 18356055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plastid genome sequences of Gymnochlora stellata, Lotharella vacuolata, and Partenskyella glossopodia reveal remarkable structural conservation among chlorarachniophyte species.
    Suzuki S; Hirakawa Y; Kofuji R; Sugita M; Ishida KI
    J Plant Res; 2016 Jul; 129(4):581-590. PubMed ID: 26920842
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A eukaryotic genome of 660 kb: electrophoretic karyotype of nucleomorph and cell nucleus of the cryptomonad alga, Pyrenomonas salina.
    Eschbach S; Hofmann CJ; Maier UG; Sitte P; Hansmann P
    Nucleic Acids Res; 1991 Apr; 19(8):1779-81. PubMed ID: 2030961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The chlorarachniophyte nucleomorph is supplemented with host cell nucleus-encoded histones.
    Löffelhardt W
    Mol Microbiol; 2011 Jun; 80(6):1413-6. PubMed ID: 21518391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for nucleomorph to host nucleus gene transfer: light-harvesting complex proteins from cryptomonads and chlorarachniophytes.
    Deane JA; Fraunholz M; Su V; Maier U-G ; Martin W; Durnford DG; McFadden GI
    Protist; 2000 Oct; 151(3):239-52. PubMed ID: 11079769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The chloroplast division protein FtsZ is encoded by a nucleomorph gene in cryptomonads.
    Fraunholz MJ; Moerschel E; Maier UG
    Mol Gen Genet; 1998 Nov; 260(2-3):207-11. PubMed ID: 9862473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polyploidy of endosymbiotically derived genomes in complex algae.
    Hirakawa Y; Ishida K
    Genome Biol Evol; 2014 Apr; 6(4):974-80. PubMed ID: 24709562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function.
    Lane CE; van den Heuvel K; Kozera C; Curtis BA; Parsons BJ; Bowman S; Archibald JM
    Proc Natl Acad Sci U S A; 2007 Dec; 104(50):19908-13. PubMed ID: 18077423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Demonstration of nucleomorph-encoded eukaryotic small subunit ribosomal RNA in cryptomonads.
    Maier UG; Hofmann CJ; Eschbach S; Wolters J; Igloi GL
    Mol Gen Genet; 1991 Nov; 230(1-2):155-60. PubMed ID: 1720859
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overexpression of molecular chaperone genes in nucleomorph genomes.
    Hirakawa Y; Suzuki S; Archibald JM; Keeling PJ; Ishida K
    Mol Biol Evol; 2014 Jun; 31(6):1437-43. PubMed ID: 24603278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The chromatin organization of a chlorarachniophyte nucleomorph genome.
    Marinov GK; Chen X; Wu T; He C; Grossman AR; Kundaje A; Greenleaf WJ
    Genome Biol; 2022 Mar; 23(1):65. PubMed ID: 35232465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts.
    Rogers MB; Gilson PR; Su V; McFadden GI; Keeling PJ
    Mol Biol Evol; 2007 Jan; 24(1):54-62. PubMed ID: 16990439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relative Mutation Rates in Nucleomorph-Bearing Algae.
    Grisdale CJ; Smith DR; Archibald JM
    Genome Biol Evol; 2019 Apr; 11(4):1045-1053. PubMed ID: 30859201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nucleomorphs: enslaved algal nuclei.
    Cavalier-Smith T
    Curr Opin Microbiol; 2002 Dec; 5(6):612-9. PubMed ID: 12457707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unique tRNA introns of an enslaved algal cell.
    Kawach O; Voss C; Wolff J; Hadfi K; Maier UG; Zauner S
    Mol Biol Evol; 2005 Aug; 22(8):1694-701. PubMed ID: 15872156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.