These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 9046471)
41. Efficacy of two formulations of Bacillus thuringiensis var. israelensis (H-14) against Aedes vexans and safety to non-target macroinvertebrates. Gharib AH; Hilsenhoff WL J Am Mosq Control Assoc; 1988 Sep; 4(3):252-5. PubMed ID: 3199115 [TBL] [Abstract][Full Text] [Related]
42. Laboratory evaluation of Bacillus thuringiensis H-14 against Aedes aegypti. Lee YW; Zairi J Trop Biomed; 2005 Jun; 22(1):5-10. PubMed ID: 16880748 [TBL] [Abstract][Full Text] [Related]
43. A novel insecticidal serotype of Clostridium bifermentans. Seleena P; Lee HL; Lecadet MM J Am Mosq Control Assoc; 1997 Dec; 13(4):395-7. PubMed ID: 9474569 [TBL] [Abstract][Full Text] [Related]
44. Results of spraying with ultra-low-volume malathion at ground level in Panama City. Echevers G; Moura Lima M; Miranda Franco R; Calheiros LB Bull Pan Am Health Organ; 1975; 9(3):232-7. PubMed ID: 1212538 [TBL] [Abstract][Full Text] [Related]
45. Protocol for the introduction of new Bacillus thuringiensis Israelensis products into the routine mosquito control program in Germany. Becker N; Rettich F J Am Mosq Control Assoc; 1994 Dec; 10(4):527-33. PubMed ID: 7707059 [TBL] [Abstract][Full Text] [Related]
46. Field evaluation of Bacillus sphaericus, H5a5b and B. thuringiensis var. israelensis, H-14 against the Bancroftian filariasis vector Culex quinquefasciatus, Say in Chennai, India. Kar I; Eapen A; Ravindran KJ; Chandrahas RK; Appavoo NC; Sadanand AV; Dhanraj B Indian J Malariol; 1997 Mar; 34(1):25-36. PubMed ID: 9291671 [TBL] [Abstract][Full Text] [Related]
47. Effect of inactivation by sunlight on the larvicidal activities of mosquitocidal Bacillus thuringiensis H-14 isolates from Nigerian soils. Obeta JA J Commun Dis; 1996 Jun; 28(2):94-100. PubMed ID: 8810143 [TBL] [Abstract][Full Text] [Related]
48. Evaluation of various control agents against mosquito larvae in rice paddies in Taiwan. Teng HJ; Lu LC; Wu YL; Fang JG J Vector Ecol; 2005 Jun; 30(1):126-32. PubMed ID: 16007966 [TBL] [Abstract][Full Text] [Related]
49. Laboratory bioassay to compare susceptibilities of Aedes aegypti and Anopheles albimanus to Bacillus thuringiensis var. israelensis as affected by their feeding rates. Mahmood F J Am Mosq Control Assoc; 1998 Mar; 14(1):69-71. PubMed ID: 9599326 [TBL] [Abstract][Full Text] [Related]
50. Efficacy of a new formulation of Bacillus thuringiensis var israelensis (Bti) in laboratory and field conditions of Kumaun foothills of Uttaranchal, India. Sharma SN; Shukla RP; Mittal PK; Adak T; Kumar A J Commun Dis; 2003 Dec; 35(4):290-9. PubMed ID: 15909759 [TBL] [Abstract][Full Text] [Related]
51. [Transgenic bioinsecticides inimical to parasites, but imical to environment]. Kucińska J; Lonc E; Rydzanicz K Wiad Parazytol; 2003; 49(1):11-20. PubMed ID: 16889013 [TBL] [Abstract][Full Text] [Related]
52. A novel cost-effective medium for the production of Bacillus thuringiensis subsp. israelensis for mosquito control. Poopathi S; Archana B Trop Biomed; 2012 Mar; 29(1):81-91. PubMed ID: 22543607 [TBL] [Abstract][Full Text] [Related]
53. Cross-resistance to Bacillus sphaericus strains in Culex quinquefasciatus. Rodcharoen J; Mulla MS J Am Mosq Control Assoc; 1996 Jun; 12(2 Pt 1):247-50. PubMed ID: 8827600 [TBL] [Abstract][Full Text] [Related]
54. Non-larvicidal effects of Bacillus thuringiensis israelensis and Bacillus sphaericus on oviposition and adult mortality of Culex quinquefasciatus Say (Diptera: Culicidae). Zahiri NS; Mulla MS J Vector Ecol; 2005 Jun; 30(1):155-62. PubMed ID: 16007971 [TBL] [Abstract][Full Text] [Related]
55. Cross-resistance spectra of Culex quinquefasciatus resistant to mosquitocidal toxins of Bacillus thuringiensis towards recombinant Escherichia coli expressing genes from B. thuringiensis ssp. israelensis. Wirth MC; Zaritsky A; Ben-Dov E; Manasherob R; Khasdan V; Boussiba S; Walton WE Environ Microbiol; 2007 Jun; 9(6):1393-401. PubMed ID: 17504477 [TBL] [Abstract][Full Text] [Related]
56. Bacterial control of mosquito larvae: investigation of stability of Bacillus thuringiensis var. israelensis and Bacillus sphaericus standard powders. Thiery I; Hamon S J Am Mosq Control Assoc; 1998 Dec; 14(4):472-6. PubMed ID: 10084145 [TBL] [Abstract][Full Text] [Related]
57. A semifield evaluation of Vectobac DT (ABG-6499), a new formulation of Bacillus thuringiensis israelensis for control of Aedes albopictus. Toma L; Severini F; Bella A; Romi R J Am Mosq Control Assoc; 2003 Dec; 19(4):424-9. PubMed ID: 14710747 [TBL] [Abstract][Full Text] [Related]
58. Field trials of Bacillus thuringiensis H-14 and Bacillus sphaericus (strain 2362) formulations against Anopheles arabiensis in the central highlands of Madagascar. Romi R; Ravoniharimelina B; Ramiakajato M; Majori G J Am Mosq Control Assoc; 1993 Sep; 9(3):325-9. PubMed ID: 8245944 [TBL] [Abstract][Full Text] [Related]
59. Evaluation of polymer-based granular formulations of Bacillus thuringiensis israelensis against larval Aedes aegypti in the laboratory. Maldonado Blanco MG; Galán Wong LJ; Rodríguez Padilla C; Quiroz Martínez H J Am Mosq Control Assoc; 2002 Dec; 18(4):352-8. PubMed ID: 12542194 [TBL] [Abstract][Full Text] [Related]
60. Control of snow pool mosquitoes with Bacillus thuringiensis serotype H-14 in mountain environments in California and Oregon. Eldridge BF; Washino RK; Henneberger D J Am Mosq Control Assoc; 1985 Mar; 1(1):69-75. PubMed ID: 3880215 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]