These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 9047041)

  • 1. Phosphorylation of myosin and twitch potentiation in fatigued skeletal muscle.
    Vandenboom R; Houston ME
    Can J Physiol Pharmacol; 1996 Dec; 74(12):1315-21. PubMed ID: 9047041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased force development rates of fatigued mouse skeletal muscle are graded to myosin light chain phosphate content.
    Vandenboom R; Xeni J; Bestic NM; Houston ME
    Am J Physiol; 1997 Jun; 272(6 Pt 2):R1980-4. PubMed ID: 9227617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absence of myosin light chain phosphorylation and twitch potentiation in atrophied skeletal muscle.
    Tubman LA; Rassier DE; MacIntosh BR
    Can J Physiol Pharmacol; 1996 Jun; 74(6):723-8. PubMed ID: 8909785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myosin phosphorylation enhances rate of force development in fast-twitch skeletal muscle.
    Vandenboom R; Grange RW; Houston ME
    Am J Physiol; 1995 Mar; 268(3 Pt 1):C596-603. PubMed ID: 7900767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of rabbit skeletal muscle myosin in situ.
    Moore RL; Houston ME; Iwamoto GA; Stull JT
    J Cell Physiol; 1985 Nov; 125(2):301-5. PubMed ID: 4055914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-frequency fatigue, post-tetanic potentiation and their interaction at different muscle lengths following eccentric exercise.
    Rijkelijkhuizen JM; de Ruiter CJ; Huijing PA; de Haan A
    J Exp Biol; 2005 Jan; 208(Pt 1):55-63. PubMed ID: 15601877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coexistence of potentiation and low-frequency fatigue during voluntary exercise in human skeletal muscle.
    Fowles JR; Green HJ
    Can J Physiol Pharmacol; 2003 Dec; 81(12):1092-100. PubMed ID: 14719027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Length-dependence of isometric twitch tension potentiation and myosin phosphorylation in mouse skeletal muscle.
    Moore RL; Persechini A
    J Cell Physiol; 1990 May; 143(2):257-62. PubMed ID: 2332450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myosin light chain phosphorylation and posttetanic potentiation in fatigued skeletal muscle.
    Tubman LA; MacIntosh BR; Maki WA
    Pflugers Arch; 1996 Apr; 431(6):882-7. PubMed ID: 8927505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potentiation of in vitro concentric work in mouse fast muscle.
    Grange RW; Vandenboom R; Xeni J; Houston ME
    J Appl Physiol (1985); 1998 Jan; 84(1):236-43. PubMed ID: 9451641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nerve influence on myosin light chain phosphorylation in slow and fast skeletal muscles.
    Bozzo C; Spolaore B; Toniolo L; Stevens L; Bastide B; Cieniewski-Bernard C; Fontana A; Mounier Y; Reggiani C
    FEBS J; 2005 Nov; 272(22):5771-85. PubMed ID: 16279942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of taurine depletion on the contractile properties and fatigue in fast-twitch skeletal muscle of the mouse.
    Hamilton EJ; Berg HM; Easton CJ; Bakker AJ
    Amino Acids; 2006 Oct; 31(3):273-8. PubMed ID: 16583307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attenuation of myosin light chain phosphorylation and posttetanic potentiation in atrophied skeletal muscle.
    Tubman LA; Rassier DE; MacIntosh BR
    Pflugers Arch; 1997 Nov; 434(6):848-51. PubMed ID: 9306021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions.
    Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J
    J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of myosin light chain kinase in muscle contraction.
    Perry SV; Cole HA; Hudlicka O; Patchell VB; Westwood SA
    Fed Proc; 1984 Dec; 43(15):3015-20. PubMed ID: 6238848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-frequency fatigue in rat skeletal muscle: role of extracellular ion concentrations.
    Cairns SP; Dulhunty AF
    Muscle Nerve; 1995 Aug; 18(8):890-8. PubMed ID: 7630351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Threshold for force potentiation associated with skeletal myosin phosphorylation.
    Vandenboom R; Grange RW; Houston ME
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1456-62. PubMed ID: 8279509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double-sigmoid model for fitting fatigue profiles in mouse fast- and slow-twitch muscle.
    Cairns SP; Robinson DM; Loiselle DS
    Exp Physiol; 2008 Jul; 93(7):851-62. PubMed ID: 18344260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of modulators of sarcoplasmic Ca2+ release on the development of skeletal muscle fatigue.
    Germinario E; Esposito A; Megighian A; Midrio M; Betto R; Danieli-Betto D
    J Appl Physiol (1985); 2004 Feb; 96(2):645-9. PubMed ID: 14715683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of contractile proteins in heart and skeletal muscle.
    Stull JT; Manning DR; High CW; Blumenthal DK
    Fed Proc; 1980 Apr; 39(5):1552-7. PubMed ID: 7364051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.