These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 9047295)
1. Perturbations to the active site of phosphotriesterase. Kuo JM; Chae MY; Raushel FM Biochemistry; 1997 Feb; 36(8):1982-8. PubMed ID: 9047295 [TBL] [Abstract][Full Text] [Related]
2. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase. Hong SB; Raushel FM Biochemistry; 1996 Aug; 35(33):10904-12. PubMed ID: 8718883 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-methylbenzylphosphonate. Vanhooke JL; Benning MM; Raushel FM; Holden HM Biochemistry; 1996 May; 35(19):6020-5. PubMed ID: 8634243 [TBL] [Abstract][Full Text] [Related]
4. Role of aspartate-133 and histidine-458 in the mechanism of tryptophan indole-lyase from Proteus vulgaris. Demidkina TV; Zakomirdina LN; Kulikova VV; Dementieva IS; Faleev NG; Ronda L; Mozzarelli A; Gollnick PD; Phillips RS Biochemistry; 2003 Sep; 42(38):11161-9. PubMed ID: 14503866 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of the reaction catalyzed by isoaspartyl dipeptidase from Escherichia coli. MartÃ-Arbona R; Fresquet V; Thoden JB; Davis ML; Holden HM; Raushel FM Biochemistry; 2005 May; 44(19):7115-24. PubMed ID: 15882050 [TBL] [Abstract][Full Text] [Related]
6. Utilization of copper as a paramagnetic probe for the binuclear metal center of phosphotriesterase. Chae MY; Omburo GA; Lindahl PA; Raushel FM Arch Biochem Biophys; 1995 Feb; 316(2):765-72. PubMed ID: 7864632 [TBL] [Abstract][Full Text] [Related]
7. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38. Johnson AR; Chen YW; Dekker EE Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233 [TBL] [Abstract][Full Text] [Related]
8. Functional requirements for the optimal catalytic configuration of the AChE active center. Shafferman A; Barak D; Kaplan D; Ordentlich A; Kronman C; Velan B Chem Biol Interact; 2005 Dec; 157-158():123-31. PubMed ID: 16256968 [TBL] [Abstract][Full Text] [Related]
9. Kinetic analysis and X-ray structure of haloalkane dehalogenase with a modified halide-binding site. Krooshof GH; Ridder IS; Tepper AW; Vos GJ; Rozeboom HJ; Kalk KH; Dijkstra BW; Janssen DB Biochemistry; 1998 Oct; 37(43):15013-23. PubMed ID: 9790663 [TBL] [Abstract][Full Text] [Related]
10. Modification of near active site residues in organophosphorus hydrolase reduces metal stoichiometry and alters substrate specificity. diSioudi B; Grimsley JK; Lai K; Wild JR Biochemistry; 1999 Mar; 38(10):2866-72. PubMed ID: 10074338 [TBL] [Abstract][Full Text] [Related]
11. The role of Mg2+ and specific amino acid residues in the catalytic reaction of the major human abasic endonuclease: new insights from EDTA-resistant incision of acyclic abasic site analogs and site-directed mutagenesis. Erzberger JP; Wilson DM J Mol Biol; 1999 Jul; 290(2):447-57. PubMed ID: 10390343 [TBL] [Abstract][Full Text] [Related]
12. Kinetic and structural consequences of replacing the aspartate bridge by asparagine in the catalytic metal triad of Escherichia coli alkaline phosphatase. Tibbitts TT; Murphy JE; Kantrowitz ER J Mol Biol; 1996 Apr; 257(3):700-15. PubMed ID: 8648634 [TBL] [Abstract][Full Text] [Related]
13. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57. Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569 [TBL] [Abstract][Full Text] [Related]
14. Stereochemical constraints on the substrate specificity of phosphotriesterase. Hong SB; Raushel FM Biochemistry; 1999 Jan; 38(4):1159-65. PubMed ID: 9930975 [TBL] [Abstract][Full Text] [Related]
15. Identification of residues essential for human paraoxonase (PON1) arylesterase/organophosphatase activities. Josse D; Xie W; Renault F; Rochu D; Schopfer LM; Masson P; Lockridge O Biochemistry; 1999 Mar; 38(9):2816-25. PubMed ID: 10052953 [TBL] [Abstract][Full Text] [Related]
16. Biochemical characterization and mutational analysis of the mononuclear non-haem Fe2+ site in Dke1, a cupin-type dioxygenase from Acinetobacter johnsonii. Leitgeb S; Straganz GD; Nidetzky B Biochem J; 2009 Mar; 418(2):403-11. PubMed ID: 18973472 [TBL] [Abstract][Full Text] [Related]
17. Proton donor in yeast pyruvate kinase: chemical and kinetic properties of the active site Thr 298 to Cys mutant. Susan-Resiga D; Nowak T Biochemistry; 2004 Dec; 43(48):15230-45. PubMed ID: 15568816 [TBL] [Abstract][Full Text] [Related]
18. Effects of mutations on the partitioning of DNA substrates between the polymerase and 3'-5' exonuclease sites of DNA polymerase I (Klenow fragment). Lam WC; Van der Schans EJ; Joyce CM; Millar DP Biochemistry; 1998 Feb; 37(6):1513-22. PubMed ID: 9484221 [TBL] [Abstract][Full Text] [Related]
19. Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase. Aubert SD; Li Y; Raushel FM Biochemistry; 2004 May; 43(19):5707-15. PubMed ID: 15134445 [TBL] [Abstract][Full Text] [Related]
20. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration. Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]