These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 9047390)
1. Identification of a dominant-negative mutation in the yeast CDC25 guanine nucleotide exchange factor for Ras. Park W; Mosteller RD; Broek D Oncogene; 1997 Feb; 14(7):831-6. PubMed ID: 9047390 [TBL] [Abstract][Full Text] [Related]
3. Properties of the catalytic domain of CDC25, a Saccharomyces cerevisiae GDP/GTP exchange factor: comparison of its activity on full-length and C-terminal truncated RAS2 proteins. Jacquet E; Parrini MC; Bernardi A; Martegani E; Parmeggiani A Biochem Biophys Res Commun; 1994 Mar; 199(2):497-503. PubMed ID: 8135791 [TBL] [Abstract][Full Text] [Related]
4. Ras-15A protein shares highly similar dominant-negative biological properties with Ras-17N and forms a stable, guanine-nucleotide resistant complex with CDC25 exchange factor. Chen SY; Huff SY; Lai CC; Der CJ; Powers S Oncogene; 1994 Sep; 9(9):2691-8. PubMed ID: 8058333 [TBL] [Abstract][Full Text] [Related]
5. Kinetic analysis by fluorescence of the interaction between Ras and the catalytic domain of the guanine nucleotide exchange factor Cdc25Mm. Lenzen C; Cool RH; Prinz H; Kuhlmann J; Wittinghofer A Biochemistry; 1998 May; 37(20):7420-30. PubMed ID: 9585556 [TBL] [Abstract][Full Text] [Related]
6. The large N-terminal domain of Cdc25 protein of the yeast Saccharomyces cerevisiae is required for glucose-induced Ras2 activation. Paiardi C; Belotti F; Colombo S; Tisi R; Martegani E FEMS Yeast Res; 2007 Dec; 7(8):1270-5. PubMed ID: 17727662 [TBL] [Abstract][Full Text] [Related]
7. A dominant negative RAS-specific guanine nucleotide exchange factor reverses neoplastic phenotype in K-ras transformed mouse fibroblasts. Bossù P; Vanoni M; Wanke V; Cesaroni MP; Tropea F; Melillo G; Asti C; Porzio S; Ruggiero P; Di Cioccio V; Maurizi G; Ciabini A; Alberghina L Oncogene; 2000 Apr; 19(17):2147-54. PubMed ID: 10815806 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of the guanine nucleotide exchange reaction of Ras GTPase--evidence for a GTP/GDP displacement model. Zhang B; Zhang Y; Shacter E; Zheng Y Biochemistry; 2005 Feb; 44(7):2566-76. PubMed ID: 15709769 [TBL] [Abstract][Full Text] [Related]
9. The minimal active domain of the mouse ras exchange factor CDC25Mm. Coccetti P; Mauri I; Alberghina L; Martegani E; Parmeggiani A Biochem Biophys Res Commun; 1995 Jan; 206(1):253-9. PubMed ID: 7818528 [TBL] [Abstract][Full Text] [Related]
10. The isolated catalytic hairpin of the Ras-specific guanine nucleotide exchange factor Cdc25Mm retains nucleotide dissociation activity but has impaired nucleotide exchange activity. Sacco E; Fantinato S; Manzoni R; Metalli D; De Gioia L; Fantucci P; Alberghina L; Vanoni M FEBS Lett; 2005 Dec; 579(30):6851-8. PubMed ID: 16325815 [TBL] [Abstract][Full Text] [Related]
11. [Ras proteins in Saccharomyces cerevisiae, their partners and their activation]. Jacquet M C R Seances Soc Biol Fil; 1997; 191(2):221-35. PubMed ID: 9255349 [TBL] [Abstract][Full Text] [Related]
12. Identification of guanine exchange factor key residues involved in exchange activity and Ras interaction. Camus C; Hermann-Le Denmat S; Jacquet M Oncogene; 1995 Sep; 11(5):951-9. PubMed ID: 7675454 [TBL] [Abstract][Full Text] [Related]
13. The catalytic domain of the mouse sos1 gene product activates Ras proteins in vivo and in vitro. Liu BX; Wei W; Broek D Oncogene; 1993 Nov; 8(11):3081-4. PubMed ID: 8414509 [TBL] [Abstract][Full Text] [Related]
14. Phosphorylation of the S. cerevisiae Cdc25 in response to glucose results in its dissociation from Ras. Gross E; Goldberg D; Levitzki A Nature; 1992 Dec 24-31; 360(6406):762-5. PubMed ID: 1334534 [TBL] [Abstract][Full Text] [Related]
15. Transformation suppressor activity of C3G is independent of its CDC25-homology domain. Guerrero C; Fernandez-Medarde A; Rojas JM; Font de Mora J; Esteban LM; Santos E Oncogene; 1998 Feb; 16(5):613-24. PubMed ID: 9482107 [TBL] [Abstract][Full Text] [Related]
16. [Yeast and the control of RAS by exchange factors]. Jacquet M; Boy-Marcotte E; Garreau H; Camus C; Hermann-Le-Denmat S; Buu A; Ikonomi P; Renault G; Kaplon T C R Seances Soc Biol Fil; 1995; 189(1):13-24. PubMed ID: 7648364 [TBL] [Abstract][Full Text] [Related]
17. Structural and functional analysis of a mutant Ras protein that is insensitive to nitric oxide activation. Mott HR; Carpenter JW; Campbell SL Biochemistry; 1997 Mar; 36(12):3640-4. PubMed ID: 9132016 [TBL] [Abstract][Full Text] [Related]
18. Biochemical characterization of C3G: an exchange factor that discriminates between Rap1 and Rap2 and is not inhibited by Rap1A(S17N). van den Berghe N; Cool RH; Horn G; Wittinghofer A Oncogene; 1997 Aug; 15(7):845-50. PubMed ID: 9266971 [TBL] [Abstract][Full Text] [Related]
19. Influence of guanine nucleotides on complex formation between Ras and CDC25 proteins. Lai CC; Boguski M; Broek D; Powers S Mol Cell Biol; 1993 Mar; 13(3):1345-52. PubMed ID: 8441380 [TBL] [Abstract][Full Text] [Related]
20. Isolation of a CDC25 family gene, MSI2/LTE1, as a multicopy suppressor of ira1. Shirayama M; Matsui Y; Tanaka K; Toh-e A Yeast; 1994 Apr; 10(4):451-61. PubMed ID: 7941731 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]