These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 9048142)

  • 1. Bioregeneration with maltose excreting Chlorella: system concept, technological development, and experiments.
    Wolf L
    Adv Space Biol Med; 1997; 6():255-74. PubMed ID: 9048142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioregeneration in space.
    Wolf L
    Adv Space Biol Med; 1996; 5():341-56. PubMed ID: 8814808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aquatic modules for bioregenerative life support systems based on the C.E.B.A.S. biotechnology [correction of biotechnilogy].
    Bluem V; Paris F
    Acta Astronaut; 2001; 48(5-12):287-97. PubMed ID: 11858270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pilot CELSS based on a maltose-excreting Chlorella: concept and overview on the technological developments.
    Brechignac F; Schiller P
    Adv Space Res; 1992; 12(5):33-6. PubMed ID: 11537074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "SYMBIOSE" SYstem for Microgravity BIOregenerative Support of Experiments.
    Brechignac F; Wolf L
    Adv Space Res; 1994 Nov; 14(11):79-88. PubMed ID: 11540222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel laboratory approaches to multi-purpose aquatic bioregenerative closed-loop food production systems.
    Blum V; Andriske M; Kreuzberg K; Paassen U; Schreibman MP; Voeste D
    Acta Astronaut; 1998; 42(1-8):25-35. PubMed ID: 11541608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aquatic modules for bioregenerative life support systems: developmental aspects based on the space flight results of the C.E.B.A.S. MIN-MODULE.
    Blum V
    Adv Space Res; 2003; 31(7):1683-91. PubMed ID: 14503506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High density long-term cultivation of Chlorella vulgaris SAG 211-12 in a novel microgravity-capable membrane raceway photobioreactor for future bioregenerative life support in SPACE.
    Helisch H; Keppler J; Detrell G; Belz S; Ewald R; Fasoulas S; Heyer AG
    Life Sci Space Res (Amst); 2020 Feb; 24():91-107. PubMed ID: 31987484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design for a bioreactor with sunlight supply and operations systems for use in the space environment.
    Mori K; Ohya H; Matsumoto K; Furuune H; Isozaki K; Siekmeier P
    Adv Space Res; 1989; 9(8):161-8. PubMed ID: 11537383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of algae for support of the human in space.
    Myers J
    Life Sci Space Res; 1964; 2():323-36. PubMed ID: 11881654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sunlight supply and gas exchange systems in the microalgal bioreactor.
    Mori K; Ohya H; Matsumoto K; Furune H
    Adv Space Res; 1987; 7(4):47-52. PubMed ID: 11537269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioregenerative [correction of bioregnerative] life support: not a picnic.
    Knott WM
    Gravit Space Biol Bull; 1998 May; 11(2):31-9. PubMed ID: 11540636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and operation of an algal photobioreactor system.
    Javanmardian M; Palsson BøO
    Adv Space Res; 1992; 12(5):231-5. PubMed ID: 11537069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioregenerative life support as self-sustaining ecosystem in space.
    Haque A; Kreuzberg K
    Microgravity Sci Technol; 1993 Mar; 6(1):43-54. PubMed ID: 11541491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study of the compatibility of certain higher plants and chlorella used as a bioregenerative human life support system].
    Shaĭdorov IuI; Shebalin BN; Meleshko GI
    Kosm Biol Aviakosm Med; 1980; 14(2):74-8. PubMed ID: 6104747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spacecraft cabin environment effects on the growth and behavior of Chlorella vulgaris for life support applications.
    Niederwieser T; Kociolek P; Klaus D
    Life Sci Space Res (Amst); 2018 Feb; 16():8-17. PubMed ID: 29475523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Support System Alternative): reinventing and compartmentalizing the Earth's food and oxygen regeneration system for long-haul space exploration missions.
    Hendrickx L; De Wever H; Hermans V; Mastroleo F; Morin N; Wilmotte A; Janssen P; Mergeay M
    Res Microbiol; 2006; 157(1):77-86. PubMed ID: 16431089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operation of an experimental algal gas exchanger for use in a CELSS.
    Smernoff DT; Wharton RA; Averner MM
    Adv Space Res; 1987; 7(4):17-27. PubMed ID: 11537265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An overview: recycling nutrients from crop residues for space applications.
    Strayer RF; Atkinson CF
    Compost Sci Util; 1997; 5(3):25-31. PubMed ID: 11541065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.