These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 9048250)
1. Modulation of procainamide's effect on conduction by cellular uncoupling in perfused rabbit hearts. Spear JF; Hook BG; Josephson ME; Moore EN J Cardiovasc Electrophysiol; 1997 Feb; 8(2):199-214. PubMed ID: 9048250 [TBL] [Abstract][Full Text] [Related]
2. Effects of cellular uncoupling on conduction in anisotropic canine ventricular myocardium. Balke CW; Lesh MD; Spear JF; Kadish A; Levine JH; Moore EN Circ Res; 1988 Nov; 63(5):879-92. PubMed ID: 3180353 [TBL] [Abstract][Full Text] [Related]
3. The effects of procainamide on conduction in anisotropic canine ventricular myocardium. Kadish AH; Spear JF; Levine JH; Moore EN Circulation; 1986 Sep; 74(3):616-25. PubMed ID: 3742759 [TBL] [Abstract][Full Text] [Related]
4. Modulation of procainamide's effect on cardiac conduction in dogs by extracellular potassium concentration. A quantitative analysis. Villemaire C; Nattel S Circulation; 1994 Jun; 89(6):2870-8. PubMed ID: 8205703 [TBL] [Abstract][Full Text] [Related]
5. Pharmacologic alterations in human type I atrial flutter cycle length and monophasic action potential duration. Evidence of a fully excitable gap in the reentrant circuit. Stambler BS; Wood MA; Ellenbogen KA J Am Coll Cardiol; 1996 Feb; 27(2):453-61. PubMed ID: 8557920 [TBL] [Abstract][Full Text] [Related]
6. Differential effects of procainamide, lidocaine and acetylstrophanthidin on body surface potentials and epicardial conduction in dogs with chronic myocardial infarction. de Langen CD; Hanich RF; Michelson EL; Kadish AH; Levine JH; Balke CW; Spear JF; Moore EN J Am Coll Cardiol; 1988 Feb; 11(2):403-13. PubMed ID: 3339181 [TBL] [Abstract][Full Text] [Related]
7. Postrepolarization refractoriness versus conduction slowing caused by class I antiarrhythmic drugs: antiarrhythmic and proarrhythmic effects. Kirchhof PF; Fabritz CL; Franz MR Circulation; 1998 Jun; 97(25):2567-74. PubMed ID: 9657478 [TBL] [Abstract][Full Text] [Related]
8. Differential effects of heptanol, potassium, and tetrodotoxin on reentrant ventricular tachycardia around a fixed obstacle in anisotropic myocardium. Brugada J; Mont L; Boersma L; Kirchhof C; Allessie MA Circulation; 1991 Sep; 84(3):1307-18. PubMed ID: 1884454 [TBL] [Abstract][Full Text] [Related]
9. Effect of cellular uncoupling by heptanol on conduction in infarcted myocardium. Spear JF; Balke CW; Lesh MD; Kadish AH; Levine JL; Moore EN Circ Res; 1990 Jan; 66(1):202-17. PubMed ID: 2295139 [TBL] [Abstract][Full Text] [Related]
10. Effects of heptanol, class Ic, and class III drugs on reentrant ventricular tachycardia. Importance of the excitable gap for the inducibility of double-wave reentry. Boersma L; Brugada J; Abdollah H; Kirchhof C; Allessie M Circulation; 1994 Aug; 90(2):1012-22. PubMed ID: 8044914 [TBL] [Abstract][Full Text] [Related]
11. The electrophysiological effects of dicentrine on the conduction system of rabbit heart. Young ML; Su MJ; Wu MH; Chen CC Br J Pharmacol; 1994 Sep; 113(1):69-76. PubMed ID: 7812635 [TBL] [Abstract][Full Text] [Related]
12. Effect of coronary perfusion of heptanol on conduction and ventricular arrhythmias in infarcted canine myocardium. Callans DJ; Moore EN; Spear JF J Cardiovasc Electrophysiol; 1996 Dec; 7(12):1159-71. PubMed ID: 8985805 [TBL] [Abstract][Full Text] [Related]
13. Reentrant circuits and the effects of heptanol in a rabbit model of infarction with a uniform anisotropic epicardial border zone. Nassif G; Dillon SM; Rayhill S; Wit AL J Cardiovasc Electrophysiol; 1993 Apr; 4(2):112-33. PubMed ID: 8269285 [TBL] [Abstract][Full Text] [Related]
14. Increased vulnerability to inducible atrial fibrillation caused by partial cellular uncoupling with heptanol. Ohara T; Qu Z; Lee MH; Ohara K; Omichi C; Mandel WJ; Chen PS; Karagueuzian HS Am J Physiol Heart Circ Physiol; 2002 Sep; 283(3):H1116-22. PubMed ID: 12181142 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of procainamide-induced rate-dependent conduction slowing by elevated myocardial extracellular potassium concentration in vivo. Cascio WE; Foster JR; Buchanan JW; Johnson TA; Gettes LS Circulation; 1987 Dec; 76(6):1380-7. PubMed ID: 3677360 [TBL] [Abstract][Full Text] [Related]
16. The effect of heptanol on the electrical and contractile function of the isolated, perfused rabbit heart. Keevil VL; Huang CL; Chau PL; Sayeed RA; Vandenberg JI Pflugers Arch; 2000 Jun; 440(2):275-82. PubMed ID: 10898528 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of procainamide-induced prevention of spontaneous wave break during ventricular fibrillation. Insight into the maintenance of fibrillation wave fronts. Kim YH; Yashima M; Wu TJ; Doshi R; Chen PS; Karagueuzian HS Circulation; 1999 Aug; 100(6):666-74. PubMed ID: 10441106 [TBL] [Abstract][Full Text] [Related]
18. Differential effects of quinidine, flecainide, and cibenzoline on anisotropic conduction in the isolated porcine heart. Lacroix D; Delfaut P; Adamantidis M; Cardinal R; Klug D; Kacet S; Dupuis B J Cardiovasc Electrophysiol; 1998 Jan; 9(1):55-69. PubMed ID: 9475578 [TBL] [Abstract][Full Text] [Related]
19. Contrasting effects of verapamil and procainamide on intraventricular conduction and reentry within the His-Purkinje system in man. Reddy CP; Orr CM; McAllister RG Acta Cardiol; 1982; 37(4):269-86. PubMed ID: 6981905 [TBL] [Abstract][Full Text] [Related]
20. A quantitative analysis of use-dependent ventricular conduction slowing by procainamide in anesthetized dogs. Villemaire C; Savard P; Talajic M; Nattel S Circulation; 1992 Jun; 85(6):2255-66. PubMed ID: 1317275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]