These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 9048300)

  • 21. Dissimilar cavitation dynamics and damage patterns produced by parallel fiber alignment to the stone surface in holmium:yttrium aluminum garnet laser lithotripsy.
    Xiang G; Li D; Chen J; Mishra A; Sankin G; Zhao X; Tang Y; Wang K; Yao J; Zhong P
    Phys Fluids (1994); 2023 Mar; 35(3):033303. PubMed ID: 36896246
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduction of bubble cavitation by modifying the diffraction wave from a lithotripter aperture.
    Zhou Y
    J Endourol; 2012 Aug; 26(8):1075-84. PubMed ID: 22332839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of shock wave pattern and cavitation bubble size on tissue damage during ureteroscopic electrohydraulic lithotripsy.
    Vorreuther R; Corleis R; Klotz T; Bernards P; Engelmann U
    J Urol; 1995 Mar; 153(3 Pt 1):849-53. PubMed ID: 7861549
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field.
    Sokolov DL; Bailey MR; Crum LA
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1685-95. PubMed ID: 11572377
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shock wave interaction with laser-generated single bubbles.
    Sankin GN; Simmons WN; Zhu SL; Zhong P
    Phys Rev Lett; 2005 Jul; 95(3):034501. PubMed ID: 16090745
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Importance of the implosion of ESWL-induced cavitation bubbles.
    Delacrétaz G; Rink K; Pittomvils G; Lafaut JP; Vandeursen H; Boving R
    Ultrasound Med Biol; 1995; 21(1):97-103. PubMed ID: 7754583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method.
    Kobayashi K; Kodama T; Takahira H
    Phys Med Biol; 2011 Oct; 56(19):6421-40. PubMed ID: 21918295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles.
    Kreider W; Crum LA; Bailey MR; Sapozhnikov OA
    J Acoust Soc Am; 2011 Nov; 130(5):3531-40. PubMed ID: 22088027
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of lithotripter shockwaves with single inertial cavitation bubbles.
    Klaseboer E; Fong SW; Turangan CK; Khoo BC; Szeri AJ; Calvisi ML; Sankin GN; Zhong P
    J Fluid Mech; 2007; 593():33-56. PubMed ID: 19018296
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro sonoluminescence and sonochemistry studies with an electrohydraulic shock-wave lithotripter.
    Matula TJ; Hilmo PR; Bailey MR; Crum LA
    Ultrasound Med Biol; 2002 Sep; 28(9):1199-207. PubMed ID: 12401391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL.
    Crum LA
    J Urol; 1988 Dec; 140(6):1587-90. PubMed ID: 3057239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acoustic bubble removal to enhance SWL efficacy at high shock rate: an in vitro study.
    Duryea AP; Roberts WW; Cain CA; Tamaddoni HA; Hall TL
    J Endourol; 2014 Jan; 28(1):90-5. PubMed ID: 23957846
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy.
    Sapozhnikov OA; Khokhlova VA; Bailey MR; Williams JC; McAteer JA; Cleveland RO; Crum LA
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1183-95. PubMed ID: 12243163
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shock-induced collapse of a bubble inside a deformable vessel.
    Coralic V; Colonius T
    Eur J Mech B Fluids; 2013 Jul; 40():64-74. PubMed ID: 24015027
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL.
    Zhong P; Zhou Y; Zhu S
    Ultrasound Med Biol; 2001 Jan; 27(1):119-34. PubMed ID: 11295278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removal of residual cavitation nuclei to enhance histotripsy erosion of model urinary stones.
    Duryea AP; Roberts WW; Cain CA; Hall TL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):896-904. PubMed ID: 25965682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Jet and Shock Wave from Collapse of Two Cavitation Bubbles.
    Luo J; Niu Z
    Sci Rep; 2019 Feb; 9(1):1352. PubMed ID: 30718594
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of energy density and acoustic cavitation in shock wave lithotripsy.
    Loske AM
    Ultrasonics; 2010 Feb; 50(2):300-5. PubMed ID: 19819511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-speed photographic evaluation of endoscopic lithotripsy devices.
    Sterenborg HJ; de Reijke TM; Wiersma J; Erckens RC; Jogsma FH
    Urol Res; 1991; 19(6):381-5. PubMed ID: 1684680
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.