These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9048380)

  • 1. Multiwavelength anomalous diffraction phasing of macromolecular structures: analysis of MAD data as single isomorphous replacement with anomalous scattering data using the MADMRG Program.
    Terwilliger TC
    Methods Enzymol; 1997; 276():530-7. PubMed ID: 9048380
    [No Abstract]   [Full Text] [Related]  

  • 2. Treatment of multiwavelength anomalous diffraction data as a special case of multiple isomorphous replacement.
    Ramakrishnan V; Biou V
    Methods Enzymol; 1997; 276():538-57. PubMed ID: 9048381
    [No Abstract]   [Full Text] [Related]  

  • 3. [30] Multiwavelength anomalous diffraction phasing of macromolecular structures: Analysis of MAD data as single isomorphous replacement with anomalous scattering data using the MADMRG program.
    Terwilliger TC
    Methods Enzymol; 1997; 276():530-537. PubMed ID: 27799113
    [No Abstract]   [Full Text] [Related]  

  • 4. Single-wavelength anomalous diffraction phasing revisited.
    Rice LM; Earnest TN; Brunger AT
    Acta Crystallogr D Biol Crystallogr; 2000 Nov; 56(Pt 11):1413-20. PubMed ID: 11053839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiwavelength anomalous diffraction at high x-ray intensity.
    Son SK; Chapman HN; Santra R
    Phys Rev Lett; 2011 Nov; 107(21):218102. PubMed ID: 22181929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of multiple-wavelength anomalous diffraction measurements in ab initio phase determination for macromolecular structures.
    Krishna Murthy HM
    Methods Mol Biol; 1996; 56():127-51. PubMed ID: 8781244
    [No Abstract]   [Full Text] [Related]  

  • 7. Substructure determination in multiwavelength anomalous diffraction, single anomalous diffraction, and single isomorphous replacement with anomalous scattering data using Shake-and-Bake.
    Smith GD; Lemke CT; Howell PL
    Methods Mol Biol; 2007; 364():183-96. PubMed ID: 17172766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining phases and anomalous-scattering models from the multiwavelength anomalous diffraction of native protein metal clusters. improved MAD phase error estimates and anomalous-scatterer positions.
    Crane BR; Getzoff ED
    Acta Crystallogr D Biol Crystallogr; 1997 Jan; 53(Pt 1):23-40. PubMed ID: 15299969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New approaches to high-throughput phasing.
    Dauter Z
    Curr Opin Struct Biol; 2002 Oct; 12(5):674-8. PubMed ID: 12464322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MAD phasing grows up.
    Ogata CM
    Nat Struct Biol; 1998 Aug; 5 Suppl():638-40. PubMed ID: 9699612
    [No Abstract]   [Full Text] [Related]  

  • 11. Crystallographic structure analysis of lamprey hemoglobin from anomalous dispersion of synchrotron radiation.
    Hendrickson WA; Smith JL; Phizackerley RP; Merritt EA
    Proteins; 1988; 4(2):77-88. PubMed ID: 3227016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A probability representation for phase information from multiwavelength anomalous dispersion.
    Pähler A; Smith JL; Hendrickson WA
    Acta Crystallogr A; 1990 Jul; 46 ( Pt 7)():537-40. PubMed ID: 2206480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-house UV radiation-damage-induced phasing of selenomethionine-labeled protein structures.
    Pereira PJ; Royant A; Panjikar S; de Sanctis D
    J Struct Biol; 2013 Feb; 181(2):89-94. PubMed ID: 23178456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiation-damage-induced phasing with anomalous scattering: substructure solution and phasing.
    Zwart PH; Banumathi S; Dauter M; Dauter Z
    Acta Crystallogr D Biol Crystallogr; 2004 Nov; 60(Pt 11):1958-63. PubMed ID: 15502302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous X-ray diffraction with soft X-ray synchrotron radiation.
    Carpentier P; Berthet-Colominas C; Capitan M; Chesne ML; Fanchon E; Lequien S; Stuhrmann H; Thiaudière D; Vicat J; Zielinski P; Kahn R
    Cell Mol Biol (Noisy-le-grand); 2000 Jul; 46(5):915-35. PubMed ID: 10976874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using X-ray absorption spectra to monitor specific radiation damage to anomalously scattering atoms in macromolecular crystallography.
    Oliéric V; Ennifar E; Meents A; Fleurant M; Besnard C; Pattison P; Schiltz M; Schulze-Briese C; Dumas P
    Acta Crystallogr D Biol Crystallogr; 2007 Jul; 63(Pt 7):759-68. PubMed ID: 17582167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure.
    Hendrickson WA; Horton JR; LeMaster DM
    EMBO J; 1990 May; 9(5):1665-72. PubMed ID: 2184035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges of sulfur SAD phasing as a routine method in macromolecular crystallography.
    Doutch J; Hough MA; Hasnain SS; Strange RW
    J Synchrotron Radiat; 2012 Jan; 19(Pt 1):19-29. PubMed ID: 22186640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A general phasing algorithm for multiple MAD and MIR data.
    Bella J; Rossmann MG
    Acta Crystallogr D Biol Crystallogr; 1998 Mar; 54(Pt 2):159-74. PubMed ID: 9761882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Personal remarks on the future of protein crystallography and structural biology.
    Jaskolski M
    Acta Biochim Pol; 2010; 57(3):261-4. PubMed ID: 20725645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.