These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 9048418)

  • 41. Antimicrobial activity of synthetic bactenecin.
    Gallis B; Mehl J; Prickett KS; Martin JA; Merriam J; March CJ; Cerretti DP
    Biotechnol Ther; 1989-1990; 1(4):335-46. PubMed ID: 2562655
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel antifungal peptides from Ceylon spinach seeds.
    Wang H; Ng TB
    Biochem Biophys Res Commun; 2001 Nov; 288(4):765-70. PubMed ID: 11688973
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification and characterization of a hexapeptide with activity against phytopathogenic fungi that cause postharvest decay in fruits.
    López-García B; González-Candelas L; Pérez-Payá E; Marcos JF
    Mol Plant Microbe Interact; 2000 Aug; 13(8):837-46. PubMed ID: 10939255
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conformation and antimicrobial activity of linear derivatives of tachyplesin lacking disulfide bonds.
    Rao AG
    Arch Biochem Biophys; 1999 Jan; 361(1):127-34. PubMed ID: 9882437
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Permeabilization of fungal membranes by plant defensins inhibits fungal growth.
    Thevissen K; Terras FR; Broekaert WF
    Appl Environ Microbiol; 1999 Dec; 65(12):5451-8. PubMed ID: 10584003
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antifungal properties of Canavalia ensiformis urease and derived peptides.
    Postal M; Martinelli AH; Becker-Ritt AB; Ligabue-Braun R; Demartini DR; Ribeiro SF; Pasquali G; Gomes VM; Carlini CR
    Peptides; 2012 Nov; 38(1):22-32. PubMed ID: 22922160
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional characterization of a synthetic hydrophilic antifungal peptide derived from the marine snail Cenchritis muricatus.
    López-Abarrategui C; Alba A; Silva ON; Reyes-Acosta O; Vasconcelos IM; Oliveira JT; Migliolo L; Costa MP; Costa CR; Silva MR; Garay HE; Dias SC; Franco OL; Otero-González AJ
    Biochimie; 2012 Apr; 94(4):968-74. PubMed ID: 22210491
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two hevein homologs isolated from the seed of Pharbitis nil L. exhibit potent antifungal activity.
    Koo JC; Lee SY; Chun HJ; Cheong YH; Choi JS; Kawabata S; Miyagi M; Tsunasawa S; Ha KS; Bae DW; Han CD; Lee BL; Cho MJ
    Biochim Biophys Acta; 1998 Jan; 1382(1):80-90. PubMed ID: 9507071
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Studies on the antifungal antibiotics: bacillomycin D and bacillomycin D methylester.
    Tenoux I; Besson F; Michel G
    Microbios; 1991; 67(272-273):187-93. PubMed ID: 1779878
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure-activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against Fusarium graminearum.
    Sagaram US; Pandurangi R; Kaur J; Smith TJ; Shah DM
    PLoS One; 2011 Apr; 6(4):e18550. PubMed ID: 21533249
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NMR structure and conformational dynamics of AtPDFL2.1, a defensin-like peptide from Arabidopsis thaliana.
    Omidvar R; Xia Y; Porcelli F; Bohlmann H; Veglia G
    Biochim Biophys Acta; 2016 Dec; 1864(12):1739-1747. PubMed ID: 27592418
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Antifungal properties and mode of action of psacotheasin, a novel knottin-type peptide derived from Psacothea hilaris.
    Hwang B; Hwang JS; Lee J; Lee DG
    Biochem Biophys Res Commun; 2010 Sep; 400(3):352-7. PubMed ID: 20735987
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Antifungal effect of CopA3 monomer peptide via membrane-active mechanism and stability to proteolysis of enantiomeric D-CopA3.
    Choi H; Hwang JS; Kim H; Lee DG
    Biochem Biophys Res Commun; 2013 Oct; 440(1):94-8. PubMed ID: 24041699
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cecropin A-derived peptides are potent inhibitors of fungal plant pathogens.
    Cavallarin L; Andreu D; San Segundo B
    Mol Plant Microbe Interact; 1998 Mar; 11(3):218-27. PubMed ID: 9487696
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Human salivary MUC7 mucin peptides: effect of size, charge and cysteine residues on antifungal activity.
    Situ H; Wei G; Smith CJ; Mashhoon S; Bobek LA
    Biochem J; 2003 Oct; 375(Pt 1):175-82. PubMed ID: 12812519
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: identification of an RGFRRR motif governing fungal cell entry.
    Sagaram US; El-Mounadi K; Buchko GW; Berg HR; Kaur J; Pandurangi RS; Smith TJ; Shah DM
    PLoS One; 2013; 8(12):e82485. PubMed ID: 24324798
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antifungal peptides homologous to the Penicillium chrysogenum antifungal protein (PAF) are widespread among Fusaria.
    Galgóczy L; Virágh M; Kovács L; Tóth B; Papp T; Vágvölgyi C
    Peptides; 2013 Jan; 39():131-7. PubMed ID: 23174348
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Using reduced amino acid composition to predict defensin family and subfamily: Integrating similarity measure and structural alphabet.
    Zuo YC; Li QZ
    Peptides; 2009 Oct; 30(10):1788-93. PubMed ID: 19591890
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Biological activity of cyclic analogs of linear peptides].
    Chipens GI
    Vestn Akad Med Nauk SSSR; 1983; (2):18-22. PubMed ID: 6837135
    [No Abstract]   [Full Text] [Related]  

  • 60. Antifungal membranolytic activity of the tyrocidines against filamentous plant fungi.
    Rautenbach M; Troskie AM; Vosloo JA; Dathe ME
    Biochimie; 2016 Nov; 130():122-131. PubMed ID: 27328781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.